

 © Eugene Shoustrov, 2004-2005

VbScriptXtra
Version 2

 www.xtramania.com

http://www.xtramania.com/

 © Eugene Shoustrov, 2004-2005

All trademarked names mentioned in this document and product are used for editorial
purposes only, with no intention of infringing upon the trademarks.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

VbScriptXtra ... 1

About VbScriptXtra .. 1

About ActiveCompanionSet ... 1

What is New in VbScriptXtra Version 2 ... 1

'ActiveCompanionSet' Xtras License Agreement .. 2

VbScriptXtra Programmer's Guide.. 6

How to Use VbScriptXtra ... 6

Typecasting..6
ProgId ..6
Creating Object..7
Object Description...7

Debugging and Errors Handling.. 8

Lingo Errors...8
Programming Errors ..8
Simple Debugging Mode...9
Advanced Debugging Mode..9
Using Put Command..10
Using Debugger and Object Inspector ..10

Samples ... 11

ADO Databasing..11
Creating Recordset Object...11
Choosing which Database to Open..11
Opening Recordset Object...12
Getting Data from Database via Recordset ...12
Modifying Data via Recordset...13
Closing Recordset..13
Connection Object ...13
Object's Dynamic Properties ...14
Using Transactions ..14

Save and Compact Microsoft Access Database ..15
Automating Microsoft PowerPoint ..16
Automating Microsoft Word ..18
Automating Microsoft Excel...20
WMI Scripting ...22

VbScriptXtra Programmer's Reference ... 23

Wrapping Objects.. 23

Common Features of Wrapping Objects ..24
Error Handling Support ...24

Succeeded ..25
Failed...25

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

LastErrorCode...26
LastError ...26

Debugging Support..27
DebugMode ...28

Type Casting Routines ..29
COM Automation to Lingo ..29
Lingo to COM Automation ..29

Unicode Conversion Support ..30
CodePage...31

Automation Object Wrapper ...34
Methods ...34

Interface() ..34
GetEnum(symName)..35
Calling Other Methods ..36

Properties ...36
EventsHandler ...36
__NewEnum...38
Getting Other Properties ...40
Setting Other Properties..40

Technical details ..41
Underscore Handling ..41
Passing Parameters by Reference ...41
Optional and Missing Method's Arguments ..42
Named Method's Arguments..42
Using Wrapper Instance as First Argument of a Method ...42
Cascading Methods and Properties in Director 7...42
Using Square Brackets ..43

Binary Data Wrapper ...44
Methods ...44

Interface() ..44
Clear() ...45
Allocate(nSize)...45
Resize(nSize) ..45
GetAt(nIndex) ..46
SetAt(nIndex, nValue)..46
ReadFromFile(strPath, nOffset, nBytesToRead)...47
WriteToFile(strPath) ...47
AppendToFile(strPath, nOffset, bSetEndOfFile)...48

Properties ...48
Count ...48
Size...49
UnsignedByte[nIndex]...49
SignedByte[nIndex] ...49
Byte[nStartIndex .. nEndIndex] ...50
Char[nIndex] ...50
Char[nStartIndex .. nEndIndex] ..51
Media ...51
Picture ...52
String ...52
HexString ...53

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Date/Time Data Wrapper ...54
Methods ...54

Interface() ..54
FormatDate(strFormat)...54
FormatTime(strFormat) ..55
MonthName(nMonth, bAbbreviated)...56
WeekdayName(nDay, bAbbreviated, nFirstDayOfWeek) ...57

Properties ...57
Value..57
Year..58
Month...58
MonthName ...58
Weekday...59
WeekdayName ...59
Day...59
Minute..59
Second..59
Millisecond ..60
Local ..60
Universal ...60

Registry Key Wrapper ..62
Methods ...62

Interface() ..62
Open(strParent, strName, symAccessType, bCreate) ...62
OpenSubKey(strName, symAccessType, bCreate) ..64
CreateSubKey(strSubKeyName)..65
DeleteSubKey(strSubKeyName) ..66
DeleteValue(strValueName)..66
GetAt(Index) ..67
SetAt(Index, Value, symType)..68

Properties ...69
Count ...69
Value..69
Value[index] ..69
ValueType[index] ..70
ValueNames ...71
SubKeyNames ..71

Xtra-level methods... 72

Init(nDebug) ..72
CreateObject(strProgId) ...72
GetObject(strProgId)...73
GetObject2(strPath, strProgId)...74
Version() ..75
SetBusyHandler(objHandler) ..76
CreateWrapper(symWrapperType) ...78

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

VbScriptXtra
About VbScriptXtra

VbScriptXtra extends the Macromedia Director's Lingo functionality with capability to
handle VB-scriptable objects. These are objects or external applications that support COM
Automation technology.

Software, which supports Automation (and therefore is supported by VbScriptXtra)
includes: Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Access,
Microsoft Internet Explorer, Microsoft Visual Source Safe, some system components
including common open/save dialogs, system shell, Windows Scripting Host, data access
components: ADO, ADOX, ADOMD, DAO, Adobe Photoshop, Adobe ImageReady,
Microsoft NetMeeting, Collaboration Data Objects (CDO), Windows Management
Instrumentation (WMI) etc.

VbScriptXtra is available for Macromedia Director (v7 and later) under Windows
95/98/ME/NT/2000/XP.

VbScriptXtra is not available for Shockwave.

Note: All trademarked names mentioned in this document and product are used for
editorial purposes only, with no intention of infringing upon the trademarks.

About ActiveCompanionSet
OLE xtra is shipped within ActiveCompanionSet. It is a bundle of xtras that provide COM,
OLE and ActiveX support for Macromedia Director. The set currently includes
VbScriptXtra, OLE xtra, ActiveX xtra and ObjectBrowserXtra.

What is New in VbScriptXtra Version 2
• VbScriptXtra was rewritten to get clearer internal architecture. Now VbScriptXtra

integrates several types of wrapper objects to provide more flexible handling of a
data of different nature.

• VbScriptXtra's Binary data wrapper is used to handle BLOB or other binary data. It
can also be used as a simple array of bytes with possibility to read/write data from
files. Binary wrapper of VbScriptXtra is free. You can freely use it in your projects.
See License Agreement for more details.

• VbScriptXtra's Date/time wrapper is used to handle date/time data. It offers quite
powerful formatting capabilities for date/time values. Date/time wrapper of
VbScriptXtra is free. You can freely use it in your projects. See License Agreement
for more details.

• VbScriptXtra's Registry key wrapper is used to handle operations with system
Registry. Registry key wrapper of VbScriptXtra is free. You can freely use it in
your projects. See License Agreement for more details.

• GetObject syntax is fully supported now. See GetObject and GetObject2
methods.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

• Type casting rules have changed a bit. Lingo symbols passed to VbScriptXtra type
casting routines are translated as named constants from the loaded type libraries.

• Older technique of picking named constants as a property of any wrapper object is
now excluded due to performance reasons. Instead use wrapper.GetEnum()
method to get the value of the specified named constant.

• VbScriptXtra ships with updated ObjectBrowserXtra. You can invoke it with
wrapper.Interface() method to view the description of methods and
properties provided by the wrapped object. ObjectBrowserXtra is free. See License
Agreement for more details.

• VbScriptXtra wrapper objects fully support Macromedia Director's debugger and
object inspector. You can now expand object instance to view values of its
properties.

• VbScriptXtra is now shipped as a part of ActiveCompanionSet xtras, providing
common scripting support for ActiveX objects.

'ActiveCompanionSet' Xtras License Agreement
This user license agreement (the AGREEMENT) is an agreement between you (individual
or single entity) and MediaMacros, Inc. and Eugene Shoustrov for the included
'ActiveCompanionSet' XTRAS (the SOFTWARE) that are accompanying this
AGREEMENT.

The SOFTWARE is the property of Eugene Shoustrov and is protected by copyright laws
and international copyright treaties. The SOFTWARE is not sold, it is licensed.

If you accept the terms and conditions of this AGREEMENT, then you are granted the
FREE LICENCE.

I. FREE LICENCE

The FREE LICENCE allows using any functionality of the SOFTWARE except for COM
Automation objects handled by Automation wrapper of VbScriptXtra and/or OLE objects
handled by OLE xtra.

The FREE LICENCE allows using COM Automation handled by Automation wrapper of
VbScriptXtra and/or OLE objects handled by OLE xtra with evaluation purposes only.

Any objects or methods that require a license will prompt with an "unregistered" message.

By accepting the FREE LICENCE you have certain rights and obligations as follow:

YOU MAY:

1. Install and use the SOFTWARE (as LICENCE permits) on any computer within
your company or home.

2. Make a copy of the SOFTWARE for archival purposes.

3. Distribute an unlimited number of copies of the SOFTWARE with your final
runtimes provided that the original package contents stay unchanged including
this EULA.

YOU MAY NOT:

1. Sublicense, rent or lease your license

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

2. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

3. Copy the documentation accompanying the SOFTWARE for use in other
software.

II. LIMITED LICENCE

LIMITED LICENSED VERSION

The LIMITED LICENSED VERSION means a Registered Version (using your personal
registration number). The LIMITED LICENSE defines a certain set of ProgIds that are
allowed to be used with the SOFTWARE.

The LIMITED LICENCE allows using any functionality of the SOFTWARE except for
COM Automation objects handled by Automation wrapper of VbScriptXtra and/or OLE
objects handled by OLE xtra not covered by the LIMITED LICENCE.

The LIMITED LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and OLE objects handled by OLE xtra covered by the LIMITED
LICENCE.

The LIMITED LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and/or OLE objects handled by OLE xtra not covered by the
LIMITED LICENCE with evaluation purposes only.

If you accept the terms and conditions of this AGREEMENT, you have certain rights and
obligations as follow:

YOU MAY:

1. Install and use the Registered SOFTWARE on any single computer.

2. Make a copy of the Registered SOFTWARE for archival purposes only.

3. Distribute an unlimited number of copies of the Xtra with your final runtimes
provided that the source code is protected and your serial number is not accessible
to any 3rd party.

YOU MAY NOT:

1. Copy and distribute the SOFTWARE with an accessible serial number.

2. Sublicense, rent or lease your license

3. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

4. Copy the documentation accompanying the SOFTWARE for use in other
software.

III. UNLIMITED LICENCE

UNLIMITED LICENSED VERSION

The UNLIMITED LICENSED VERSION means a Registered Version (using your
personal special registration number).

The UNLIMITED LICENCE allows using any functionality of the SOFTWARE.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

If you accept the terms and conditions of this AGREEMENT, you have certain rights and
obligations as follow:

YOU MAY:

1. Install and use the Registered SOFTWARE on any single computer.

2. Make a copy of the Registered SOFTWARE for archival purposes only.

3. Distribute an unlimited number of copies of the Xtra with your final runtimes
provided that the source code is protected and your serial number is not accessible
to any 3rd party.

YOU MAY NOT:

1. Copy and distribute the SOFTWARE with an accessible serial number.

2. Sublicense, rent or lease your license

3. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

4. Copy the documentation accompanying the SOFTWARE for use in other
software.

WARRANTY DISCLAIMER

The SOFTWARE is supplied "AS IS". MediaMacros, Inc. and Eugene Shoustrov disclaim
all warranties, expressed or implied, including, without limitation, the warranties of
merchantability and of fitness for any purpose. The user must assume the entire risk of
using this SOFTWARE.

DISCLAIMER OF DAMAGES

MediaMacros, Inc. and Eugene Shoustrov assume no liability for damages, direct or
consequential, which may result from the use of this SOFTWARE, even if MediaMacros,
Inc. and/or Eugene Shoustrov have been advised of the possibility of such damages.

TERM

This license is effective from the date of obtaining or purchasing the SOFTWARE and
shall remain in force until terminated. You may terminate the license and this agreement at
any time by destroying the SOFTWARE and its documentation, together with all copies in
any form that reside on your computer or media.

COPYRIGHT NOTICE:

The Company and/or our Licensors hold valid copyright in the Software. Nothing in this
Agreement constitutes a waiver of any rights under U.S. Copyright law or any other federal
or state law.

ACKNOWLEDGMENT:

BY USING THIS SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE READ
THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE
COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN
YOU AND THE COMPANY AND SUPERCEDES ALL PROPOSALS OR PRIOR
ENDORSEMENTS, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

BETWEEN YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE
COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

All trademarked names mentioned in this document and product are used for editorial
purposes only, with no intention of infringing upon the trademarks.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

VbScriptXtra Programmer's Guide
How to Use VbScriptXtra

VbScriptXtra allows using COM Automation objects right from Lingo. COM Automation
technology is used by many applications to expose their functionality to external
applications or to macro programming. Visual Basic, VbScript, JavaScript, C/C++ and
others are languages that can be used for programming Automation objects. VbScriptXtra
extends Lingo with possibility of programming Automation objects.

Any Automation object has a certain set of methods and properties. These methods and
properties might accept or return either plain data types like numbers, strings, etc. or other
Automation objects. Simple applications might expose their functionality via one single
Automation object. More complicated applications might contain the whole internal data
model with a large hierarchy of objects.

VbScriptXtra can handle Automation objects by wrapping them with special wrapper
objects provided by the xtra. In Lingo these wrapper objects are referred via usual Lingo
variables of type 'instance'. Methods and properties exposed by Automation object are
automatically available at Lingo level with the wrapper object. So, any method or property
called with wrapper object is passed to the wrapped Automation object. Returned value is
passed back to Lingo level.

Typecasting
VbScriptXtra performs necessary typecasting operations required to pass Lingo values to
Automation object and vice versa. Plain data types are mapped to appropriate Lingo types.
If Automation objects use another Automation object as a parameter, VbScriptXtra can
accept its own wrappers to extract the wrapped data and use it as an actual parameter. If
Automation object returns another Automation object, VbScriptXtra automatically creates
another wrapper object for the returning value. In this way cascading properties access is
working.

Some Automation types cannot be mapped to Lingo directly. So typecasting operation is
not always possible. For some types VbScriptXtra provides special wrappers. Binary data
(BLOB) is wrapped with special Binary wrapper. It is a kind of array of bytes that could be
handled by Lingo. Binary wrapper allows data to be written to file or used as media of
Director cast members etc. Date/time data is wrapped by special date/time wrapper. This
wrapper provides standard for VB functionality for formatting date/time values and other
features.

ProgId
Creatable Automation objects are identified by their ProgIds. ProgId is normally a string
that consists of several dot separated items. The first item normally means the application
name. The second item normally identifies an object type within Application. And the
optional third item identifies the required version of object. If the third item is skipped then
the currently installed version of application is used. For example the ProgId of Microsoft
Word 2003 is "Word.Application.11". The ProgId of a document of Microsoft Word
2003 is "Word.Document.11". If the third item is missed "Word.Application" then
this ProgId identifies the currently installed version of Microsoft Word.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Creating Object
To create an instance of the Automation object use one of xtra-level methods
CreateObject(strProgId), GetObject(strProgId) or GetObject2(
strPath, strProgId).

CreateObject method creates an Automation object of the requested ProgId. If
successful, it returns VbScriptXtra wrapper for newly created Automation object.
Otherwise it returns a string with error description.
vb = xtra("VbScriptXtra")
w = vb.CreateObject("Word.Application")
w.visible = true

GetObject method looks for currently running object of the specified ProgId. If it finds
one then it wraps it with the VbScriptXtra wrapper. Otherwise it returns string with error
description.
vb = xtra("VbScriptXtra")

-- Creating a new instance of Microsoft Word
w = vb.GetObject("Word.Application")

if not objectP(w) then
 w = vb.CreateObject("Word.Application")
end if

GetObject2 method is used for creating Automation object either from file or from user-
friendly specially formatted string. In the first case VbScriptXtra creates an instance of the
requested Automation object and then makes it to load the specified file.
vb = xtra("VbScriptXtra")

-- Getting a Word document from file
doc = vb.GetObject("D:\file.doc", "Word.Document")

doc.Application.visible = true

The second case is used to get Automation objects by specially formatted string describing
which object is wanted. It is often used in WMI scripting for example.
vb = xtra("VbScriptXtra")

objDisk = vb.GetObject2("WinMgmts:win32_LogicalDisk.DeviceId='C:'", "")
props = ObjSet.Properties_.__NewEnum

repeat with i = 1 to props.Count
 put props[i].Name & ":" && props[i].Value
end repeat

Object Description
Automation objects usually provide a type library that defines methods and properties
provided by the object. This information is useful for discovering what you can do with a
particular object. VbScriptXtra can invoke ObjectBrowser window that shows the
description of the wrapped Automation object. Use Interface() method of any
Automation wrapper object. Make sure ObjectBrowser.x32 is placed in Xtras folder of
your Director installation.
vb = xtra("VbScriptXtra")
w = vb.CreateObject("Word.Application")
w.visible = true

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

-- Shows description of Documents collection of Word application
w.Documents.interface()

Another useful source of information about how to do anything with something is the
documentation of the application. All Microsoft Office applications have complete
documentation about programming them. This documentation describes everything in VB
syntax, but it can be simply translated to Lingo syntax.

Recording a macro in Office applications allows you to see VB representation of certain
operations. The same code could be written with Lingo and VbScriptXtra.

Debugging and Errors Handling
There are two main levels of errors related to VbScriptXtra. They have completely
different nature and therefore have to be handled differently.

Lingo Errors
Lingo errors are similar to incorrect Lingo syntax run-time errors. They cause Director to
show error alert saying something like "Method or property not found in object" or "One
parameter expected". In Projector they might halt script execution etc. These errors usually
mean that something is wrong with the programming. Wrong method call syntax is used or
something similar to it. VbScriptXtra might return error codes to Director that make
Director to show Lingo error alert box. It happens when wrapper object discovers the
programming error at the Lingo level (wrong syntax, wrong parameters and other compile
time evident programming errors).

Programming Errors
This level includes errors that are actually exception conditions. They happen or do not
happen depending on particular execution context. They are normal in programming
practice and have to be handled programmatically. For example if file operation fails it
does not have to worry end-user with Lingo error alert box. Instead developer should check
whether operation completed successfully and perform what is appropriate.

VbScriptXtra provides programming errors handling support based on storing status of the
last call within every wrapper object. In other words, every VbScriptXtra's wrapper object
keeps the error code and description returned by the most recently called method or
property. Before returning from the call to any wrapper object the last error information (if
any) is being set by the wrapper object. Right before calling the next method or property of
the wrapper object the last error information is cleared.

To check the status of the most recent call to the object use obj.Failed or
obj.Succeeded properties. The error message and error code are available via
obj.LastError and obj.LastErrorCode properties.

If Lingo statement includes cascading property access, several wrapper objects might be
involved. Most of these wrappers (except the first one) are temporarily and therefore they
are not accessible after the Lingo statement. So the error information could be lost.
Sometimes it is worth to store intermediate wrappers in a Lingo variable just to have an
opportunity to check whether a call was successful.

This sample shows how to check error status when multiple wrappers are involved in
cascading property access operation.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

on OpenWordDocument strPath
 vb = xtra("VbScriptXtra")
 w = vb.CreateObject("Word.Application")

 docs = w.Documents
 doc = docs.Open(strPath)

 if docs.Succeeded then
 return doc
 end if

 alert doc.LastError
 return VOID
end

Compare the above sample to the following one.
on OpenWordDocument strPath
 vb = xtra("VbScriptXtra")
 w = vb.CreateObject("Word.Application")

 doc = w.Documents.Open(strPath)

 -- Incorrect check since "w.Documents" always works
 -- while Open(strPath) might fail
 if w.Succeeded then
 return doc
 end if

 alert doc.LastError
 return VOID
end

Simple Debugging Mode
Since errors are happening VbScriptXtra provides debugging modes to simplify debugging
process.

In simple debugging mode any wrapper object puts error information into Messages
window whenever error occurred. Usually simple debugging mode is useful to detect
whether script is executed well or there is a problem somewhere. Error messages usually
come from wrapped objects but there is no information about the context where error
occurred.

To set the simple debugging mode for the xtra use:
on prepareMovie
 if the playerMode = "author" then
 xtra("VbScriptXtra").Init(1)
 end if
end

Advanced Debugging Mode
Advanced debugging mode allows you to catch error right in Debugger whenever error
occurred. In this mode VbScriptXtra tries to call movie-level handler
VbScriptXtra_DebugEvent(strMes, nCode). If there is no such
handler, the xtra behaves as in simple debugging mode. This handler may contain any
Lingo statements. Furthermore, you can place a break point inside this handler and use
Director's debugging capabilities to view the calling context, variables etc.

Sample movie-level handler for advanced debugging.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

on prepareMovie
 if the playerMode = "author" then
 xtra("VbScriptXtra").Init(2)
 end if
end

on VbScriptXtra_DebugEvent strMes, nCode
 put strMes -- Place the break point here
end

Debugging mode is kept separately for every VbScriptXtra wrapper object. Use
DebugMode property to change the debugging mode of the particular object directly.
Otherwise use xtra-level Init(nDebug) method to set the default debugging mode for
newly created wrappers. This method does not affect objects that already exist at the time
of calling this method.

Using Put Command
Every wrapper object provides descriptive information about itself via put Lingo method.
To see what the wrapper object contains simply put it in Messages window.
Vb = xtra("VbScriptXtra")

objDate = vb.CreateWrapper(#Date)

put objDate
--"< VbScriptXtra, Date/Time, 09/03/2004 20:22:44 >"

objWord = vb.CreateObject("Word.Application")

put objWord
--"< VbScriptXtra, _Application, 0x001FB29C, (1) >"

objBinary = vb.CreateWrapper(#Binary)

objBinary.String = "Test"
put objBinary
--"< VbScriptXtra, Binary, Size: 4 byte(s) >"

Using Debugger and Object Inspector
VbScriptXtra wrappers support viewing their contents via Director Debugger and Object
Inspector.

Automation wrapper allows expanding its entry in Debugger to view properties of the
wrapped Automation object. It is quite convenient although it has side effect that conflicts
with debugging modes. When wrapper's entry in debugger is expanded Director internally
calls all properties available to view in debugger. Wrapper object cannot distinguish
whether it is called by debugger or by Lingo script. Therefore last error information kept
by the wrapper object is erased with the status of the last method or property that was
called by Director but not Lingo script. In advanced debugging mode the
VbScriptXtra_DebugEvent movie level handler could be called while Director asks
object for its property values. So take care with that.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Samples

ADO Databasing
ActiveX Data Objects (ADO) provides a universal programming way of handling
databases. VbScriptXtra allows using ADO within Lingo.

ADO documentation is probably already available at your Windows\Help folder. See
ADO210.CHM file. Otherwise there is MSDN.

Creating Recordset Object
Use xtra-level method CreateObject(strProgId) to create wrapper for
ADODB.Recordset object:
Vb = xtra("VbScriptXtra")

rst = vb.CreateObject("ADODB.Recordset")

Check resulting value to ensure that ADO is available. If function succeeded rst will be
the Lingo object reference, otherwise it will be a string, describing error:
if objectP(rst) then
 put "Recordset created"
else
 put "Error:" && rst
end if

Choosing which Database to Open
ADO usually uses a connection string to specify to which database to connect or which
database to open. Connection string is usually the string in a form
"PropertyName=PropertyValue;OtherPropertyName=OtherValue". Here are
several samples, how the connection string may look like:

MS Access databases
strCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=D:\Temp\DB.mdb;
Mode=ReadWrite"

MS Access databases (password protected)
strCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=D:\Temp\DB.mdb;
Mode=ReadWrite; Jet OLEDB:Database Password=PasswordHere"

MS Access databases via ODBC driver (DSN-less connection):
strCnn = "DRIVER={Microsoft Access Driver (*.mdb)}; DBQ=D:\Temp\DB.mdb"

MS SQL Server:
strCnn = "Provider=SQLOLEDB.1; Integrated Security=SSPI;Persist
Security Info=False;Initial Catalog=DemoDB;Data Source=SqlServerName"

Oracle databases:
strCnn = "Provider=MSDAORA.1; Password=psw; User ID=admin; Data
Source=srv; Persist Security Info=True"

The most important property in connection string is "Provider". Its value usually
determines the type of database to work with. Other properties specify additional

http://msdn.microsoft.com/library/en-us/ado270/htm/dasdkadooverview.asp

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

information that may be specific to the provider. Note that if you omit the provider
property, the default will be used. Default provider for ADO is OLE DB Provider for
ODBC.

Note that connection string may specify the type of access to data. In the first example
"Mode=ReadWrite" specifies that connection to database is for reading and writing. All
or almost all information specified in connection string may be adjusted directly by setting
properties of the connection object. But in simple scenario you do not use Connection
object directly, although ADO will create it implicitly during processing of the recordset's
Open method. So, in simple scenario connection string is the only source of information
about which database to open.

Opening Recordset Object
To get actual database data with ADO you have to open a recordset with specified
command text over specified connection. The command text may be a SQL query or
command, a table name, a stored procedure name, or other provider specific command.

To open recordset you may call the recordset's Open method:
strCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=D:\Temp\DB.mdb;
Mode=ReadWrite;"

strSQL = "SELECT SomeFieldName, SomeOtherFieldName FROM SomeTable ORDER
BY SomeFieldName"

rst.Open(strSQL, strCnn)

if rst.succeeded then
 put "Recordset state:"&&rst.State
else
 put "Error:"&&rst.lastError
end if

Be sure to always check whether call was successful if you do not use VbScriptXtra's
debugging mode, since ADO often (but not always) returns useful error descriptions, if you
do something incorrectly. After Open call succeeded, check the state property of the
recordset. Usually if source text specifies row-returning query (like SELECT), the
rst.state property will be set to adStateOpen (=1). If source text specifies command
query (like INSERT), the state of recordset object will be set to adStateClosed (=0).

Getting Data from Database via Recordset
The recordset object with rst.state = adStateOpen is ready to provide access to the
data. Recordset provides access to the data in record by record manner. So at any given
moment you can only access the current record. Move the current record of a recordset
with rst.MoveNext(), rst.MovePrevious(), rst.MoveFirst, rst.MoveLast()
functions. Use rst.EOF and rst.BOF properties to determine whether recordset has
reached the end or the beginning. Use rst.Fields collection to actually work with data:
repeat while not rst.eof
 put rst.fields["SomeFieldName" or SomeFieldIndex].Value
 rst.MoveNext()
end repeat

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Modifying Data via Recordset
By default, recordset's Open method will open read only forward only recordset. It means
such recordset will not be able to modify data and will not be able to move the current
record backward. This behavior is determined by other parameters of rst.Open method.
See the description of cursorType and lockType parameters of rst.Open method. In
general, lockType parameter determines the type of locking to be applied to the data. The
default value is adLockReadOnly, which allows only read access to the data. The
cursorType defines the capabilities of the recordset in relation to data changes made by
others. The default value is adOpenForwardOpen, which defines a static copy of a set of
records with forward only movement capability. Usually, in case you are going to modify
data in database you may set the lockType parameter to adLockPessimistic and the
cursorType parameter to adOpenKeyset:
rst.Open(strSQL, strCnn, #adOpenKeyset, #adLockPessimistic)
if rst.succeeded then
 put "Recordset state:" && rst.State
else
 put "Error:" && rst.lastError
end if

Now you are able to make modifications to data:
rst.Fields["SomeFieldName"].Value = SomeNewValue
rst.Fields["SomeOtherFieldName"].Value = SomeOtherNewValue
rst.Update()

The actual data modification is occurred on Update method. Always check whether call
was succeeded, since data provider may deny attempt to modify data if data violates
database integrity or other database rules.

Closing Recordset
After you finish using particular recordset you may reopen it with other parameters. Use
rst.Close method to release system resources associated with open recordset. Then you
may reopen it with other parameters. If you do not need it any more, make sure to void out
any Lingo variable that may store a reference to the VbScriptXtra wrapper object, thus
completely releasing it from memory.

Connection Object
In certain cases you may need to use alternative approach to perform required task. For
example, you have to create connection object before opening recordset to open recordset
inside a transaction. The other example is retrieving database schema information.

Use xtra-level method CreateObject(strProgId) to create wrapper for
ADODB.Connection object:
Vb = xtra("VbScriptXtra")

cnn = vb.CreateObject("ADODB.Connection")

Check resulting value to ensure that ADO is available. If function succeeded cnn will be
the Lingo object reference, otherwise it will be a string, describing error. Use
cnn.Version property to determine ADO version:
if objectP(cnn) then
 put "ADO version:" && cnn.Version

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

else
 put "Error:" && cnn
end if

Then you have to adjust connection parameters using Connection object's properties. See
cnn.ConnectionString, cnn.Provider and other properties of the Connection
object. Otherwise you may specify connection information as parameters of cnn.Open
method.

Object's Dynamic Properties
Connection object contains the collection of dynamic properties cnn.Properties. This
collection contains multiple properties specific to the provider. You may access this
collection after you specify which provider to use. If you do not specify any, the OLE DB
provider for ODBC will be used. Once you set the provider of the connection object you
cannot change it for this particular instance. After you specify provider you may look at
dynamic properties it supports:
cnn.Provider = "Microsoft.Jet.OLEDB.4.0"
repeat with i = 0 to cnn.Properties.Count - 1
 put cnn.Properties[i].Name && "=" && cnn.Properties[i].Value
end repeat

You may adjust some dynamic properties:
cnn.Properties["SomePropertyName"] = SomeNewPropertyValue

The recordset object contains its own provider specific collection of the dynamic
properties. They may be accessed in the same way.

Using Transactions
You may use opened connection to start transaction. Use cnn.BeginTrans to start
transaction. Use cnn.CommitTrans method to save changes or cnn.RollbackTrans
method to cancel the changes being made inside the current transaction.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Save and Compact Microsoft Access Database
Sometimes Jet (Microsoft Access) databases need to be compacted to decrease database
size. There is a library called Microsoft Jet and Replication Objects that provides
JetEngine object. One of its methods allows compacting/converting existing database
into another file. It also allows setting or changing Jet database password.

At first create an instance of a JetEngine object:
vb = xtra("VbScriptXtra")

-- Creating a new instance of JetEngine
jet = vb.CreateObject("JRO.JetEngine")

Then you have to know the connection string for your existing database. Note: the
database should not be opened by anyone else during save and compact procedure.
Normally it is something like:
strSourceCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=D:\Temp\DB.mdb"

If you set the Jet password for your database, it looks like:
strSourceCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=D:\Temp\DB.mdb; Jet OLEDB:Database Password=PasswordHere"

Then you have to build a connection string for the new file that will be created by this
operation.
strDestCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=D:\Temp\DB2.mdb"

You may specify new Jet database password or convert it to another engine type.
strDestCnn = "Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=D:\Temp\DB2.mdb; Jet OLEDB:New Database
Password=NewPasswordHere; Jet OLEDB:Engine Type=5"

To get more details about Jet properties and settings visit MSDN.

Then you may call CompactDatabase method of the JetEngine object.
jet.CompactDatabase(strSourceCnn, strDestCnn)
if jet.Failed then alert jet.LastError

If the operation completes successfully Jet creates a new file of the specified type with the
specified password if any. You may use any file management xtras to move newly created
file into the original location. You can also move the file with VbScriptXtra and
FileSystemObject.
-- Creating a new instance of FileSystemObject
fso = vb.CreateObject("Scripting.FileSystemObject")

-- Deleting old source file
fso.DeleteFile("D:\Temp\DB.mdb")

-- Moving new file in place of the old one
fso.MoveFile("D:\Temp\DB2.mdb", "D:\Temp\DB.mdb")

http://msdn.microsoft.com/library/en-us/dnacc2k/html/adoproperties.asp

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Automating Microsoft PowerPoint
This sample makes a slide in a new PowerPoint presentation from the current Director
frame.
vb = xtra("VbScriptXtra")

-- Create a new instance of PowerPoint
ppt = vb.CreateObject("PowerPoint.Application")

-- Create new presentation
p = ppt.Presentations.Add()

-- Add new slide to the newly created presentation
s = p.Slides.Add(1, #ppLayoutBlank)

-- Scanning Director's current frame for texts and linked pictures
repeat with i = 1 to the lastChannel

 if sprite(i).type <> 0 then
 mem = sprite(i).member
 r = sprite(i).rect

 case mem.type of
 #text:
 -- Add text box for a text member
 sh = s.shapes.AddTextbox(1, r[1], r[2], r.width, r.height)
 sh.RTF = mem.rtf

 #bitmap:
 -- if bitmap member is linked
 if mem.fileName <> "" then
 -- Add picture shape for a bitmap member
 sh = s.shapes.AddPicture(mem.fileName, #true, #false, \
 r[1], r[2], r.width, r.height)
 end if
 end case
 end if
end repeat

-- Now make PowerPoint visible
ppt.visible = #true

To find out how to save resulting presentation use ObjectBrowser xtra. Right after you get
the instance of the Presentaion object, call Interface() method.
-- Create new presentation
p = ppt.Presentations.Add()

p.Inteface()

If ObjectBrowser xtra is placed in Director's xtras folder, it will show up with the
description of methods and properties available for Presentation object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

"Method: SaveAs

Arguments:
 IN String FileName
 IN PpSaveAsFileType FileFormat, Optional
 IN MsoTriState EmbedTrueTypeFonts, Optional

Returns: VOID

Call syntax:
 SaveAs(FileName, FileFormat, EmbedTrueTypeFonts)"

So, since FileFormat and EmbedTrueTypeFonts are optional you may simply specify
the new file name to save the presentation with default format.
p.SaveAs(the moviePath & "p.ppt")

-- or

p.SaveAs(the moviePath & "p.ppt", #ppSaveAsPresentation, #false)

To quit PowerPoint set to VOID all references to PowerPoint objects. Call Quit() method
of PowerPoint application object and set it to VOID too.
s = VOID
p = VOID

ppt.Quit()
ppt = VOID

Note: In Macromedia Director (version 7, 8, 8.5) 'quit' was reserved and did not passed to
the xtra at all. To workaround this issue VbScriptXtra uses 'underscore handling'. Add one
underscore '_' at the beginning of the Quit. VbScriptXtra will automatically remove it and
will call real Quit method of the wrapped object.
-- Underscore will be removed by VbScriptXtra internally
ppt._Quit()

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Automating Microsoft Word
This sample creates a simple Microsoft Word document.
vb = xtra("VbScriptXtra")

-- Creating a new instance of Microsoft Word
wordApp = vb.CreateObject("Word.Application")

-- Checking whether object is created
if not objectP(wordApp) then
 alert "Failed to create Word.Application:" & RETURN & wordApp
 exit
end if

-- Setting application's window params
wordApp.visible = #true
wordApp.left = 100
wordApp.top = 100
wordApp.width = 400
wordApp.height = 300

-- Creating new document
doc = wordApp.Documents.Add()

-- Arranging document window
wordApp.Windows.Arrange()

-- Typing simple message at the beginning of the document
doc.range().InsertAfter("Hello Word!")

-- Setting the font style of all text in document
doc.content.bold = #true

To find out how to open existing Word document use ObjectBrowser xtra. Right after you
get the instance of the Word object, call Interface() method of Documents collection.
-- Creating a new instance of Microsoft Word
wordApp = vb.CreateObject("Word.Application")

wordApp.Documents.Inteface()

If ObjectBrowser xtra is placed in Director's xtras folder, it will show up with the
description of methods and properties available for Word's Application.Documents
object.

"Method: Open

Arguments:
 IN Variant* FileName
 IN Variant* ConfirmConversions, Optional
 IN Variant* ReadOnly, Optional
 IN Variant* AddToRecentFiles, Optional
 IN Variant* PasswordDocument, Optional
 IN Variant* PasswordTemplate, Optional
 IN Variant* Revert, Optional
 IN Variant* WritePasswordDocument, Optional
 IN Variant* WritePasswordTemplate, Optional
 IN Variant* Format, Optional
 IN Variant* Encoding, Optional
 IN Variant* Visible, Optional
 IN Variant* OpenAndRepair, Optional
 IN Variant* DocumentDirection, Optional

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

 IN Variant* NoEncodingDialog, Optional
 IN Variant* XMLTransform, Optional

Returns: Document*

Call syntax:
 Open(FileName, ConfirmConversions, ReadOnly, AddToRecentFiles,
PasswordDocument, PasswordTemplate, Revert, WritePasswordDocument,
WritePasswordTemplate, Format, Encoding, Visible, OpenAndRepair,
DocumentDirection, NoEncodingDialog, XMLTransform)"

As you see, most of parameters are optional. So you may simply specify the file name.
-- Creating a new instance of Microsoft Word
wordApp = vb.CreateObject("Word.Application")

-- Opening the document
docs = wordApp.Documents
docs.Open(the moviePath & "sample.doc")

-- Check whether document is opened successfully
if docs.Failed then
 alert "Failed to open document." & RETURN & docs.LastError
 exit
end if

-- Making Word visible
wordApp.visible = #true

There is an alternative way to open Word document.
-- Opening the document
doc = vb.GetObject2(the moviePath & "sample.doc", "Word.Document")

-- Check whether document is opened successfully
if not objectP(doc) then
 alert "Failed to open document." & RETURN & doc
 exit
end if

-- Making Word visible
doc.Application.visible = #true

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Automating Microsoft Excel
This sample creates a new workbook and outputs a simple message to the first cell of the
first worksheet.
vb = xtra("VbScriptXtra")

-- Creating a new instance of Microsoft Excel
excel = vb.CreateObject("Excel.Application")

-- Checking whether object is created
if not objectP(excel) then
 alert "Failed to create Excel.Application:" & RETURN & excel
 exit
end if

-- Setting application's window params
excel.visible = #true
excel.DisplayFullScreen = #false
excel.left=100
excel.top=100
excel.width=400
excel.height=300

-- Creating new workbook
workbook= excel.workbooks.add()

-- Getting access to the first worksheet of the newly created workbook
sheet = workbook.Worksheets(1)

-- Arranging work book window
excel.Windows.Arrange()

-- Setting the value of the left-top cell
-- Extra parentheses required for Director 7
(sheet.Cells(1,1)).Value = "Hello Excel!"

-- Setting the font style of the left-top cell
sheet.cells(1,1).Style.Font.Bold = #true

-- Setting the width and height of the cell using range property
sheet.range("A1:A1").rowHeight = 64
sheet.range("A1:A1").columnWidth = 16

Good source of information about how to do something with Microsoft Office application
is to record a macro within that application. Then see the Visual Basic code of the newly
recorded macro. It will show you which methods and properties you should call to
complete the required task. In most cases macro code could be directly translated to Lingo
and VbScriptXtra.

Visual Basic macros usually use so-called named arguments where every method
parameter is identified with its name, like in the following line, created by macro recorder
in Excel.
Workbooks.Open Filename:="D:\Temp\Book2.xls"

To translate this statement to Lingo named argument should be translated to usual ordinal
argument. In most cases you can simply skip the argument name. So in Lingo it should be:
Workbooks.Open("D:\Temp\Book2.xls")

Sometimes you will have to check the method definition to know correct order of
arguments expected by the method. Use either ObjectBrowser xtra or documentation for
the application being automated.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Inside Visual Basic macro reference to the application object is assumed by default. So that
statement is actually a Workbooks property of an Excel's Application object. So, in
Lingo you should use a VbScriptXtra's object holding Excels Application object.
vb = xtra("VbScriptXtra")

-- Creating a new instance of Microsoft Excel
excel = vb.CreateObject("Excel.Application")

excel.Workbooks.Open("D:\Temp\Book2.xls")

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

WMI Scripting
Windows Management Instrumentation is a system level component that provides
management information and control in an enterprise environment. Here is the sample that
enumerates different properties of the logical drive C:.
vb = xtra("VbScriptXtra")

-- Obtain WMI object for drive C:
devC = vb.GetObject2("WinMgmts:win32_LogicalDisk.DeviceId='C:'", "")

-- Getting the enumeration of available properties
props = ObjSet.Properties_.__NewEnum

-- Output available properties from a collection
repeat with i = 1 to props.count
 if props[i].value <> #Null then
 put props[i].name & ":" && props[i].value
 end if
end repeat

This sample outputs following information with my drive C:.
-- "Caption: C:"
-- "Compressed: 0"
-- "CreationClassName: Win32_LogicalDisk"
-- "Description: Local Fixed Disk"
-- "DeviceID: C:"
-- "DriveType: 3"
-- "FileSystem: FAT32"
-- "FreeSpace: 158916608"
-- "MaximumComponentLength: 255"
-- "MediaType: 12"
-- "Name: C:"
-- "Size: 4194902016"
-- "SupportsFileBasedCompression: 0"
-- "SystemCreationClassName: Win32_ComputerSystem"
-- "SystemName: EUGENE"
-- "VolumeName: SYS"
-- "VolumeSerialNumber: 77963952"

More details about using WMI are available at MSDN.

http://msdn.microsoft.com/library/en-us/dnanchor/html/anch_wmi.asp

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

VbScriptXtra Programmer's Reference
Wrapping Objects

VbScriptXtra provides its basic functionality via so-called wrapper objects. Wrapper
objects allow using the wrapped contents from Lingo. Wrapper object provides methods
and properties accessing wrapped contents or provided by wrapped contents.

Automation object wrapper is a key component of VbScriptXtra. Wrapper object keeps the
pointer to the real Automation object. When Lingo calls any method or property from
wrapper object it passes it to the wrapped Automation object providing necessary type
casting and error checking support. Automation object wrapper is created automatically by
typecasting routines when IDispatch value is detected.

To explicitly create this wrapper use xtra-level CreateObject or GetObject method:
objAuto = xtra("VbScriptXtra").CreateObject(strProgId)

Binary data wrapper is provided by VbScriptXtra for handling binary data. It is a kind of
array of bytes that could be handled by Lingo. Binary wrapper is created automatically by
typecasting routines when BLOB value is detected.

To explicitly create this wrapper use xtra-level CreateWrapper method:
binaryWrapper = xtra("VbScriptXtra").CreateWrapper(#Binary)

Date/Time wrapper is provided by VbScriptXtra for handling date/time data. It is created
automatically by typecasting routines when VB date/time value is detected. This wrapper
provides standard for VB functionality for formatting date/time values and other features.

To explicitly create this wrapper use xtra-level CreateWrapper method:
dateWrapper = xtra("VbScriptXtra").CreateWrapper(#Date)

Registry key wrapper is Provided by VbScriptXtra for handling operations with system
Registry. It allows browsing Registry keys checking for values and subordinate keys.

To create this wrapper use xtra-level CreateWrapper method:
registryKeyWrapper = xtra("VbScriptXtra").CreateWrapper(#RegistryKey)

Further versions of VbScriptXtra might include other wrapper types as well.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Common Features of Wrapping Objects
Every wrapper object is built on the same prototype that provides some basic functionality
common for all wrapper objects implemented by VbScriptXtra. Basic wrapper
functionality includes: error handling and debugging support, type casting routines,
Unicode conversion support.

Error Handling Support
There are two main levels of errors related to VbScriptXtra. They have completely
different nature and therefore have to be handled differently.

Lingo Errors

Lingo errors are similar to incorrect Lingo syntax run-time errors. They cause Director to
show error alert saying something like "Method or property not found in object" or "One
parameter expected". In Projector they might halt script execution etc. These errors usually
mean that something is wrong with the programming. Wrong method call syntax is used or
something similar to it. VbScriptXtra might return error codes to Director that make
Director to show Lingo error alert box. It happens when wrapper object discovers the
programming error at the Lingo level (wrong syntax, wrong parameters and other evident
programming errors).

Programming Errors

This level includes errors that are actually exception conditions. They happen or do not
happen depending on particular execution context. They are normal in programming
practice and have to be handled programmatically. For example if file operation fails it
does not have to worry end-user with Lingo error alert box. Instead developer should check
whether operation completed successfully and perform what is appropriate.

VbScriptXtra provides programming errors handling support based on storing status of the
last call within every wrapper object. In other words, every VbScriptXtra's wrapper object
keeps the error code and description returned by the most recently called method or
property. Before returning from the call to any wrapper object the last error information (if
any) is being set by the wrapper object. Right before calling the next method or property of
the wrapper object the last error information is cleared.

To check the status of the most recent call to the object use obj.Failed or
obj.Succeeded properties. The error message and error code are available via
obj.LastError and obj.LastErrorCode properties.

If Lingo statement includes cascading property access, several wrapper objects might be
involved. Most of these wrappers (except the first one) are temporarily and therefore they
are not accessible after the Lingo statement. So the error information could be lost.
Sometimes it is worth to store intermediate wrappers in a Lingo variable just to have an
opportunity to check whether a call was successful.

This sample shows how to check error status when multiple wrappers are involved in
cascading property access operation.
on OpenWordDocument strPath
 vb = xtra("VbScriptXtra")
 w = vb.CreateObject("Word.Application")

 docs = w.Documents
 doc = docs.Open(strPath)

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

 if docs.Succeeded then
 return doc
 end if

 alert doc.LastError
 return VOID
end

Compare the above sample to the following one.
on OpenWordDocument strPath
 vb = xtra("VbScriptXtra")
 w = vb.CreateObject("Word.Application")

 doc = w.Documents.Open(strPath)

 -- Incorrect check since "w.Documents" always works
 -- while Open(strPath) might fail
 if w.Succeeded then
 return doc
 end if

 alert doc.LastError
 return VOID
end

Succeeded

Returns whether the most recent call to the wrapped contents was successful.

Syntax
bResult = obj.Succeeded

Return values

True

If the previous call to the wrapper's contents was successful

False

If the previous call to the wrapper's contents was not successful. The error code and
description are available via LastErrorCode and LastError properties.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
wrapper object.

Failed

Returns whether the most recent call to the wrapped contents has failed.

Syntax
bResult = obj.Failed

Return values

True

If the previous call to the wrapper's contents was not successful. The error code and
description are available via LastErrorCode and LastError properties.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

False

If the previous call to the wrapper's contents was successful

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
wrapper object.

LastErrorCode

Returns the code of the last error (if any) happened while calling the contents of a wrapper
object.

Syntax
nCode = obj.LastErrorCode

Return values

Integer

Integer value that indicates the error code of the most recent call to the wrapped
contents. If the most recent call completed successfully, the error code is 0.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
wrapper object.

Most of error codes are coming from the wrapped Automation objects. They define their
own error codes usually described in component's documentation.

Other error codes are defined by COM. Here come errors produced by passing incorrect
parameters or skipping required parameter etc.

Several error codes are defined by VbScriptXtra. They could occur if VbScriptXtra failed
to typecast Lingo value into COM variant or vice versa.

LastError

Returns the description of the last error (if any) happened while calling the contents of a
wrapper object.

Syntax
strErrorMessage = obj.LastError

Return values

String

String value that contains the error description of the most recent call to the wrapped
contents. If the most recent call completed successfully, the error description is empty.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
wrapper object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Debugging Support
Every wrapper object created by VbScriptXtra can detect errors returned by wrapped
objects. Internal VbScriptXtra errors (type casting problems etc) could happen too.
Normally these errors could be trapped programmatically by checking object's last error
status after any meaningful call to the object. See error handling support properties for
more details. To simplify debugging process VbScriptXtra provides debugging mode.

Simple Debugging Mode

In simple debugging mode any wrapper object puts error information into Messages
window whenever error occurred. Usually simple debugging mode is useful to detect
whether script is executed well or there is a problem somewhere. Error messages usually
come from wrapped objects but there is no information about the context where error
occurred.

Advanced Debugging Mode

Advanced debugging mode allows you to catch error right in Debugger whenever error
occurred. In this mode VbScriptXtra tries to call movie-level handler
VbScriptXtra_DebugEvent(strMes, nCode). If there is no such
handler, the xtra behaves as in simple debugging mode. This handler may contain any
Lingo statements. Furthermore, you can place a break point inside this handler and use
Director's debugging capabilities to view the calling context, variables etc.

Sample movie-level handler for advanced debugging.
on prepareMovie
 if the playerMode = "author" then
 xtra("VbScriptXtra").Init(2)
 end if
end

on VbScriptXtra_DebugEvent strMes, nCode
 put strMes -- Place the break point here
end

Debugging mode is kept separately for every VbScriptXtra wrapper object. Use
DebugMode property to change the debugging mode of the particular object directly.
Otherwise use xtra-level Init(nDebug) method to set the default debugging mode for
newly created wrappers. This method does not affect objects that already exist at the time
of calling this method.

Using Put Command

Every wrapper object provides descriptive information about itself via put Lingo method.
To see what the wrapper object contains simply put it in Messages window.
Vb = xtra("VbScriptXtra")

objDate = vb.CreateWrapper(#Date)

put objDate
--"< VbScriptXtra, Date/Time, 09/03/2004 20:22:44 >"

objWord = vb.CreateObject("Word.Application")

put objWord
--"< VbScriptXtra, _Application, 0x001FB29C, (1) >"

objBinary = vb.CreateWrapper(#Binary)

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

objBinary.String = "Test"
put objBinary
--"< VbScriptXtra, Binary, Size: 4 byte(s) >"

Using Debugger and Object Inspector

VbScriptXtra wrappers support viewing their contents via Director Debugger and Object
Inspector.

Automation wrapper allows expanding its entry in Debugger to view properties of the
wrapped Automation object. It is quite convenient although it has side effect that conflicts
with debugging modes. When wrapper's entry in debugger is expanded Director internally
calls all properties available to view in debugger. Wrapper object cannot distinguish
whether it is called by debugger or by Lingo script. Therefore last error information kept
by the wrapper object is erased with the status of the last method or property that was
called by Director but not Lingo script. In advanced debugging mode the
VbScriptXtra_DebugEvent movie level handler could be called while Director asks
object for its property values. So take care with that.

DebugMode

Sets or gets the debugging mode for the specific wrapper object.

Syntax
nDebugMode = obj.DebugMode

obj.DebugMode = nDebugMode

Parameters

nDebugMode - Integer

Debugging mode for newly created objects. This parameter can be one of the following
values.

Value Meaning
0 No debugging support. Release behavior.
1 Simple debugging. Any error is automatically printed in Messages

window.
2 Advanced debugging. When any error is occurred, the xtra calls movie

level handler VbScriptXtra_DebugEvent(strMes, nCode).

Return values

Integer

Integer value that indicates the current debugging mode applied to the wrapper.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
wrapper object.

Debugging mode is inherited by wrapper objects that are produced by the current object
during calls to the wrapped contents.

Temporary wrapper objects produced by cascading properties access Lingo statement get
the debugging mode from their parent object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

New wrappers created by CreateObject or CreateWrapper xtra-level methods inherits
default xtra-level debug mode that is set by Init method.

Type Casting Routines
COM Automation defines certain set of possible types that values could be. Lingo defines
another set of types that Lingo values could be. VbScriptXtra performs necessary type
casting operations to map one set of types into another.

In some cases VbScriptXtra cannot know how to convert the value from one type to
another. So it can fail with error message saying "Cannot type cast Lingo or COM value".
This type of errors could be programmatically detected via standard VbScriptXtra's
wrappers error checking properties.

COM Automation to Lingo

This conversion happens when VbScriptXtra wrapper returns any value returned by the
wrapped object or when updating arguments passed by reference. This includes getting
property values of the wrapped automation object.

The table below describes COM Automation types which are recognized by VbScriptXtra
wrapper and into which Lingo types they are converted.

Automation type Lingo type or value
EMPTY VOID
NULL Symbol #Null

Integer (signed/unsigned),
1,2,4 bytes

Integer signed 4 bytes native to Director
value

Error Integer

Float 4,8 bytes Float

Numeric Float
Date VbScriptXtra Date/time wrapper
Unicode String MBCS String
Boolean Integer (1 or 0)
Currency Float
GUID String

SafeArray of Variants Linear List (recursively)
IUnknown Tries to get IDispatch. Might fail with

respective COM error.
Automation object (IDispatch) VbScriptXtra Automation object wrapper
Empty pointer to IDispatch or
IUnknown

Symbol #Nothing

SafeArray of Bytes
(BLOB, OLE, Image)

VbScriptXtra Binary data wrapper

Lingo to COM Automation

This conversion happens when VbScriptXtra wrapper passes any arguments to the
wrapped automation object. This includes assigning property values of the wrapped
automation object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Lingo type or value Automation type or value
Symbol #Null NULL
Symbol #Nothing IDispatch (empty pointer)
Symbol #True Boolean (true)
Symbol #False Boolean (false)
Symbol other symbols Enumeration value from currently

known to VbScriptXtra type
libraries

Integer signed integer 4 bytes
Float Float 8 bytes
MBCS String Unicode String
Date Float

Property or Linear List SafeArray of Variants (recursive)
VOID Missing value
Parent Script Instance Uses 'Value' property of the instance
VbScriptXtra Automation wrapper IDispatch

VbScriptXtra Binary data wrapper SafeArray (Vector) of Bytes
VbScriptXtra Date/Time wrapper Date

Unicode Conversion Support
Macromedia Director (up to the current version MX 2004) uses MBCS text encoding.
MBCS states for Multi Byte Code String. In MBCS each character is encoded by one or
more bytes. Mapping of the particular character and its numerical code is based on the
current Code Page (default for user's system). Some languages (English, French, German
other European languages) do not use more than one byte for encoding one character.
Other languages (Japanese, Arabic and other) do really use multi byte feature of MBCS.

Unicode defines numerical values for all known characters of almost all used languages.
Every character is encoded by two bytes in Unicode.

COM technology internally assumes that all text data is in Unicode. So, here comes the
problem of conversion text inside VbScriptXtra at the moment of passing text data from
Director to COM and vice versa.

Unicode to MBCS conversion always assumes some specific code page for MBCS
encoding. Normally system default code page is used. In most cases the default code page
provides correct conversion between Unicode and MBCS. However default code page
might be incorrect choice for some multilingual applications build with Macromedia
Director.

Consider an application that stores some text data in database. Application is expected to
be distributed all over the World. Suppose text data in database is in French and is encoded
in Unicode. While application is being developed in France everything is fine since in
France most systems probably has ANSI code page as a system default code page. When
French text data in Unicode comes to Director through VbScriptXtra, it is being converted
to MBCS with ANSI code page and then it is displayed on stage with fonts that know how
to display ANSI characters.

What happens if we run this application under system with another default code page? For
example with Cyrillic code page. Text data from database comes in Unicode. If the xtra

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

tries to convert it by using default (Cyrillic) code page it most likely will be converted as
some Latin characters and a lot of '?' questions, because certain characters that are in CE
code page do not present in Cyrillic code page. So after this conversion we get some
MBCS data, but French fonts will not be able to display it properly, since font knows only
ANSI numeric codes. So end-user will not be able to see French text under Cyrillic system.

That is why VbScriptXtra provides a special property that controls which code page is used
for text conversion between Unicode and MBCS. In the above example, even under
Cyrillic system VbScriptXtra could convert Unicode text into MBCS with ANSI (1252)
code page.

CodePage

Controls code page number used by the wrapper's object Unicode - MBCS text conversion
routines.

Syntax
nCodePage = obj.CodePage

obj.CodePage = nCodePage

Parameters

nCodePage - Integer

Integer value that indicates which code page to use while conversion text from/to
Unicode/MBCS.

Return values

Integer

Integer value that indicates the current code page number applied to the wrapper object.

Remarks

This property does not clear the last error flag. It means this property does not affect the
last error information for the particular wrapper object.

The CodePage property allows the xtra to be used in multilingual environment.

Director uses MBCS (Multibyte Character Set). Every character is encoded by one or two
bytes. The encoding is based on the particular code page number.

COM assumes that all text data is Unicode encoded. Unicode text does not rely on the
current code page setting, since every character is encoded by two bytes.

This property defines particular code page number to be used in text conversion routines of
the xtra.

By default, the CodePage property is 0 - ANSI code page. It defines the default behavior
for the system.

The CodePage property affects all text conversion operations initiated by this instance of
the wrapper. All wrappers created by this wrapper inherit the value of CodePage property.
In other words, all VbScriptXtra wrappers created by xtra-level methods CreateObject
or CreateWrapper get the default value of the code page, which is zero. Wrapper
instances derived from other wrapper instance inherits the code page setting of the parent
wrapper object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Take care when changing the default value of this property, since inappropriate code page
number may result in empty string as a result of text conversion. Below is the list of
possible code page numbers:

Code page number Meaning
0 System default code page (ANSI by default)
2 Macintosh code page
1 OEM code page
42 Symbol code page (Win2k)
3 The current thread's ANSI code page (Win2k)
65000 Translate using UTF-7 (Win2k, NT 4.0)
65001 Translate using UTF-8 (Win2k, NT 4.0)
037 EBCDIC
437 MS-DOS United States
500 EBCDIC "500V1"
708 Arabic (ASMO 708)
709 Arabic (ASMO 449+, BCON V4)
710 Arabic (Transparent Arabic)
720 Arabic (Transparent ASMO)
737 Greek (formerly 437G)
775 Baltic
850 MS-DOS Multilingual (Latin I)
852 MS-DOS Slavic (Latin II)
855 IBM Cyrillic (primarily Russian)
857 IBM Turkish
860 MS-DOS Portuguese
861 MS-DOS Icelandic
862 Hebrew
863 MS-DOS Canadian-French
864 Arabic
865 MS-DOS Nordic
866 MS-DOS Russian
869 IBM Modern Greek
874 Thai
875 EBCDIC
932 Japanese
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan; Hong Kong SAR, PRC)
1026 EBCDIC
1200 Unicode (BMP of ISO 10646)
1250 Windows 3.1 Eastern European
1251 Windows 3.1 Cyrillic
1252 Windows 3.1 US (ANSI)

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

1253 Windows 3.1 Greek
1254 Windows 3.1 Turkish
1255 Hebrew
1256 Arabic
1257 Baltic
1361 Korean (Johab)
10000 Macintosh Roman
10001 Macintosh Japanese
10006 Macintosh Greek I
10007 Macintosh Cyrillic
10029 Macintosh Latin 2
10079 Macintosh Icelandic
10081 Macintosh Turkish

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Automation Object Wrapper
Automation object wrapper is a key component of VbScriptXtra. Wrapper object keeps the
pointer to the real Automation object. When Lingo calls any method or property from
wrapper object it passes it to the wrapped Automation object providing necessary type
casting and error checking support. Automation object wrapper is created automatically by
typecasting routines when IDispatch value is detected.

To explicitly create this wrapper use xtra-level CreateObject or GetObject method:
objAuto = xtra("VbScriptXtra").CreateObject(strProgId)

Most of methods and properties called from the wrapper are simply passed to the wrapped
Automation object.

Use Interface() method to get the type library information of the wrapped Automation
object via ObjectBrowser xtra.

Use GenEnum(name) method to get the value of named constant from wrapped object
type library.

To handle events provided by the wrapped automation object use EventsHandler
property.

Collection enumeration support is available via special __NewEnum property.

Methods

Interface()

Invokes ObjectBrowser xtra to display methods and properties provided by the wrapped
Automation object.

Syntax
strError = objAuto.Interface()

Return values

String

Returns a string message whether it succeeded calling ObjectBrowser xtra.

Remarks

This method does not clear the last error flag. It means this method does not affect the last
error information for the particular wrapper object.

Sample

The sample creates an instance of Microsoft Word and invokes ObjectBrowser to
display methods and properties provided by Documents collection.
vb = xtra("VbScriptXtra")

w = vb.CreateObject("Word.Application")
w.visible = true

put w.documents.Interface()

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

GetEnum(symName)

Gets the named enumeration value from currently loaded by VbScriptXtra type libraries.

Any COM Automation object is usually described by a type library provided by the object.
Type libraries often contain a set of named constants. They are used as parameters to
object methods or properties or in any other means depending on the particular object.

Once VbScriptXtra detects new Automation object it scans its type library for these
enumerations that contain named constants. After that these values are accessible via this
method.

Syntax
Value = objAuto.GetEnum(Symbol symName)

Parameters

symName

String or Symbol with the name of enumeration value

Return values

Returns the appropriate enumeration value. If no matching enumeration is found then
wrapper raises Lingo error "Invalid parameter".

Remarks

This method does not clear the last error flag. It means this method does not affect the last
error information for the particular wrapper object.

Note: VbScriptXtra type casting routine translates Lingo symbols the same way as this
method does. So in most cases you may simply place enumeration value name as symbol,
but this will only work if you use it as a parameter to any method that will be passed to the
wrapped Automation object. Also you cannot use symbols in arithmetic expressions. Also
you cannot compare the property value to a Lingo symbol. Be aware that Lingo symbol is
not the value of appropriate enumeration. It turns to it only when VbScriptXtra type
casting routine is involved.

Note: Some type libraries refer to other type libraries that could define their own
enumerations. For example, it is the way how Microsoft Office applications type libraries
are built. Once VbScriptXtra detects an object from another type library it scans
enumerations from their, but before that moment VbScriptXtra might know nothing about
enumerations from external library.

Sample

This sample demonstrates enumeration values usage.
Vb = xtra("VbScriptXtra")
ppt = vb.CreateObject("PowerPoint.Application")

p = ppt.presentations.Add()
s = p.Slides.Add(1, #ppLayoutBlank)

-- or
s = p.Slides.Add(1, p.GetEnum(#ppLayoutBlank))

In the following sample it is important to use GetEnum method but not plain symbols,
since bitwise operations and comparisons do have sense only with enumeration values but
not with symbols.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

if bitand(rst.state, rst.GetEnum(#adStateFetching)) = \
 rst.GetEnum(adStateFetching) then
 -- if fetching is in progress exiting handler
 exit
end if

Calling Other Methods

Syntax
result = objAuto.MethodName(parameters)

Wrapper passes any method name to the wrapped Automation object. If Automation object
does not accept the method name, wrapper raises Lingo error "Handler not found in
object". Also see Underscore handling for more details.

Parameters

Any parameters are converted to appropriate Automation types, if possible. See type
casting for details about supported Lingo types. See Technical details for more info.

Return values

Returns whatever is returned by wrapped Automation object translated to the appropriate
Lingo type, if possible. See type casting about supported COM Automation types. Retuned
value could be either plain Lingo type or another VbScriptXtra wrapper. So cascaded
method and property calls are possible.

Remarks

If VbScriptXtra cannot type cast Lingo values passed as parameters or returned COM
Automation value, method sets the last error information that is available via common
error handling properties.

VbScriptXtra specific errors include:

Error code Meaning
1021 Cannot convert COM value to Lingo value. VbScriptXtra does know how

to convert used COM Automation type to Lingo.
1022 Cannot convert Lingo value to COM value. VbScriptXtra does know how

to convert used Lingo type to COM Automation.

Other errors could be produced by Automation object itself or COM or type casting code
in some cases.

Properties

EventsHandler

Gets or sets the events handler for the wrapped Automation object. The handler could be
either parent script instance or sprite reference. Using sprite reference is useful for
handling events fired by visual ActiveX controls or OLE objects activated in-place. Refer
to ActiveX xtra and OLE xtra documentation for more details.

Syntax
objParentScript = objAuto.EventsHandler

objAuto.EventsHandler = objParentScript

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Parameters

objParentScript

The instance of the parent script or sprite reference that handles events or VOID if there
should not be any.

Return values

Object

Current parent script instance or sprite reference that handles events or VOID if there is
no one.

Remarks

Some Automation objects can provide feedback via so-called events. Events usually used
to inform clients about anything or to ask whether server should or should not do
something. For example Microsoft Word notifies via events that document is about to be
closed allowing event's handler to prevent closing of the document if time for it has not
come yet.

Use ObjectBrowser to see whether particular object provides events.

Setting this property to a parent script instance makes the wrapper object to connect to the
even source and start listening for events. Once some event occurs, wrapper object tries to
call the parent script instance with that event.

Parameters to event handlers are passed by using property lists. This is done to allow event
handlers to operate with parameters passed by reference.

For every event attached script instance is called twice. At first wrapper object tries to call
the handler with the event name.
on EventName me, lstArgs
 put "EventName:" && lstArgs
end

Then IncomingEvent handler is called. Note: lstArgs coming to this handler might be
modified by the previous handler (if any).
on IncomingEvent me, symEvent, lstArgs
 put symEvent, lstArgs
end

It is up to developer to choose which handling method to use. Both handlers are always
called. If there is no handler to handle the event it is ignored.

Sample

Sample demonstrates using events with ADODB.Connection object.
-- ***
-- Here is the code for EventHandler parent script
on new me
 return me
end

on IncomingEvent me, event, args
 put event, args
end

on ConnectComplete me, args
 pError = args[1]

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

 adStatus = args[2]
 pConnection = args[3]

 put "ConnectComplete"

 if (adStatus <> 1) then alert pError.Description
end

on Disconnect me, args
 adStatus = args[1]
 pConnection = args[2]

 put "Disconnect"
end

on WillConnect me, args
 ConnectionString = args[1]
 UserID = args[2]
 Password = args[3]
 Options = args[4]
 adStatus = args[5]
 pConnection = args[6]

 put "WillConnect"

 -- Creating new connection string
 -- Microsoft Jet provider for MS Access databases
 cnnStr = "Provider=Microsoft.Jet.OLEDB.4.0;"
 cnnStr = cnnStr & "Data Source=D:\Temp\TestDB.mdb;"
 cnnStr = cnnStr & "Mode=Read|Write;"

 -- return it to the connection object via referenced parameter
 args[1] = cnnStr
end

-- End of the code for EventHandler parent script
-- ***

Name this script as "ConnectionEvents". Then try to execute following lines right in
Director's messages window.
Vb = xtra("VbScriptXtra")

-- Setting debug mode to true
vb.Init(true)

-- Creating an instance of the ADODB.Connection object
cnn = vb.CreateObject("ADODB.Connection")

-- Creating an instance of the events handler parent script
evnts = new(script("ConnectionEvents"))

-- Attaching handler to a wrapper
cnn.EventsHandler = evnts

-- Opening connection without explicitly specifying connection params
-- Connection string should be set by the events handler
cnn.Open()

cnn.Close()

__NewEnum

Returns the special collection enumerator object that allows access to collection elements.
This property is normally hidden to VB users. It is called automatically by 'for each'
statement. Consider following VB sample:
Set w = GetObject("Word.Application")

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

For Each Doc in w.Documents
 MsgBox Doc.Name
next

Lingo does have equivalent language construction 'repeat with each', but it is
unavailable to be used by xtra (or at least it is undocumented). So VbScriptXtra provides
the special collection enumerator object that uses the same mechanism of collection
enumerating as VB does.

Most of real collections provide its own Count property and Item(Index) method
allowing enumerating the collection, but sometimes this internal enumeration support
might be necessary.

Note: the exact name of this property in VB is '_NewEnum' (one underscore '_'). Due to
VbScriptXtra Underscore Handling it is necessary to add one extra underscore when
getting this property.

Syntax
objCollection = objAuto.__NewEnum -- Note two underscore

count = objCollection.Count

element = objCollection[nIndex]

element = objCollection.GetAt(nIndex)

Parameters

nIndex

One-based index of the required element. Integer value in the range from 1 to collection
count is expected. If it is less than 1 method will raise Lingo error "Value out of range".
If requested index is not accessible (for example it exceeds the number of elements in
collection) the method sets the last error information of the collection enumerator
object. It is available via common error handling properties.

Return values

Object

Wrapper object for the collection enumerator.

Remarks

Collection enumerator object only supports accessing element methods and properties
shown in syntax above.

Sample

The sample demonstrates enumerating documents collection by using __NewEnum
property.
w = vb.GetObject("Word.Application")

col = w.Documents.__NewEnum
repeat with i = 1 to col.Count
 doc = col[i]
 put doc.Name
end repeat

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Getting Other Properties

Syntax
result = objAuto.PropertyName

result = objAuto.PropertyName[valIndex]

Wrapper passes any property name to the wrapped Automation object. If Automation
object does not accept the property name, wrapper raises Lingo error "Property not found".
Also see Underscore handling for more details.

Parameters

Parameter (if any) is converted to appropriate Automation type, if possible. See type
casting for details about supported Lingo types.

Return values

Returns whatever is returned by wrapped Automation object translated to the appropriate
Lingo type, if possible. See type casting about supported COM Automation types. Retuned
value could be either plain Lingo type or another VbScriptXtra wrapper. So cascaded
method and property calls are possible.

Remarks

If VbScriptXtra cannot type cast Lingo values passed as parameters or returned COM
Automation value, method sets the last error information that is available via common
error handling properties.

VbScriptXtra specific errors include:

Error code Meaning
1021 Cannot convert COM value to Lingo value. VbScriptXtra does know how

to convert used COM Automation type to Lingo.
1022 Cannot convert Lingo value to COM value. VbScriptXtra does know how

to convert used Lingo type to COM Automation.

Other errors could be produced by Automation object itself or COM or type casting code
in some cases.

Setting Other Properties

Syntax
objAuto.PropertyName = SomeValue

objAuto.PropertyName[valIndex] = SomeValue

Wrapper passes any property name to the wrapped Automation object. If Automation
object does not accept the property name, wrapper raises Lingo error "Property not found".
Also see Underscore handling for more details.

Parameters

Parameters are converted to appropriate Automation types, if possible. See type casting for
details about supported Lingo types.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Remarks

If VbScriptXtra cannot type cast Lingo values passed as parameters or returned COM
Automation value, method sets the last error information that is available via common
error handling properties.

VbScriptXtra specific errors include:

Error code Meaning
1021 Cannot convert COM value to Lingo value. VbScriptXtra does know how

to convert used COM Automation type to Lingo.
1022 Cannot convert Lingo value to COM value. VbScriptXtra does know how

to convert used Lingo type to COM Automation.

Other errors could be produced by Automation object itself or COM or type casting code
in some cases.

Technical details

Underscore Handling

Macromedia Director (D7, D8, and D8.5) sometimes behaves strangely with certain
names. Director does not allow some names to be used as properties or method names. In
Director MX and MX 2004 this problem seems to be fixed.

To workaround this issue Automation wrapper at first tries to see whether wrapped object
knows passed name. If so, it is processed. If it does not know it and the name starts with
underscore '_' wrapper removes the first underscore and tries again.

Currently noticed names are: 'Delete' (D7, D8, and D8.5) and 'Append' (D8.5).

Attempt to invoke Delete method of the wrapped Automation object generates a Lingo
error before Delete is even passed to the xtra (D7, D8, D8.5). The same way behaves D8.5
with Append method. To eliminate this problem use:
Object._Delete()

object._Append()

VbScriptXtra will remove the first underscore before passing method name to the wrapped
Automation object. So methods are called correctly.

Passing Parameters by Reference

VbScriptXtra Automation wrappers support arguments passed by reference, although it
requires some special conventions. Lingo passes simple type values by value, but
automation objects sometimes rely on arguments passed by reference. VbScriptXtra
wrapper accepts parent script instances as method arguments. Once wrapper encounters
such argument it will use its 'Value' property as an actual argument of the automation
object's method. Then after method is executed, wrapper will put the updated argument
value to 'value' property of the parent script instance.

So, if you expecting modified argument value you will have to create a simple parent script
instance, set its value property with actual argument value, use that instance as an
argument to wrapper object's method and then get the updated value from that instance.
Most automation objects' method do not use arguments passed by reference, but
sometimes, there is no other way.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Optional and Missing Method's Arguments

Optional and missing arguments are supported by VbScriptXtra but Lingo requires you to
use VOID value to indicate missing argument in the middle of the parameters list. Missing
arguments in the end of the arguments list may be safely skipped. Default values will be
used by automation object.

Named Method's Arguments

VbScriptXtra does not support named arguments since they are not supported by Lingo. In
Visual Basic you may use following syntax:
obj.Method paramName := actualValue

VbScriptXtra does not provide this feature. So you have to place parameters in the correct
order as usual in Lingo.

Using Wrapper Instance as First Argument of a Method

Take care while passing VbScriptXtra wrapper instance as the first argument to a movie
handler. This may cause problems with some automation objects.

The problem arises from Lingo supporting both original and dot syntax. When Lingo
interpreter encounters a method call, it checks whether its first argument is an object
instance. So it tries to invoke a method of that object with the same name. If this call fails
Lingo searches for a movie handler with this name and calls it if successful.

VbScriptXtra wrapper instance accepts any method name and tries to pass it to the
wrapped automation object. Most of automation objects support a fixed set of methods, so
the wrapper is capable to find out whether wrapped object supports the particular method
or not. Such objects do not cause problems and are correctly passed to the movie handler if
they do not support the same method.

There is at least one automation object, which behaves differently. It is
ADODB.Connection object. Its instances accept any method names (not only supported
directly), since Connection object may try to execute the stored database procedure, which
may exist in database. If stored procedure exists it is executed, otherwise it generates
corresponding error. This behavior does not allow VbScriptXtra wrapper to know whether
such automation object supports particular name or not.

So, avoid passing wrapper instances as the first argument of movie handlers, since you
may unintentionally call a method of this object instead of your movie handler.

Cascading Methods and Properties in Director 7

Director 7 has a bug in Lingo interpreter, which requires placing extra brackets to access
properties of an object returned by some method. For example, the following statement
will generate Lingo error.
put objAuto.someMethod().someProp -- Lingo error here

To avoid it you have to bracket method call:
put (objAuto.someMethod()).someProp -- Ok

Director 8 and later do not have this problem.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Using Square Brackets

When calling method with single argument or accessing indexed property with single
index, it is possible to use either normal or square brackets. For example following Lingo
syntax is possible with VbScriptXtra wrappers:
put rst.fields["FiledName"].Value -- works in D7 too

put rst.fields("FiledName").Value -- does not work in D7, see above

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Binary Data Wrapper
Binary data wrapper is provided by VbScriptXtra for handling binary data. It is a kind of
array of bytes that could be handled by Lingo. Binary wrapper is created automatically by
typecasting routines when BLOB value is detected.

To explicitly create this wrapper use xtra-level CreateWrapper method:
binaryWrapper = xtra("VbScriptXtra").CreateWrapper(#Binary)

Newly created binary wrapper is initialized as an empty array.

Use Interface() method to get the short description of methods and properties provided
by this object.

Use Allocate(nSize) or Resize(nSize) methods to set the wrapped data to the
requested amount of bytes. Clear() method releases all allocated memory. Use Count or
Size properties or methods to get the allocated size of the wrapped data.

Binary wrapper supports list-like element access via GetAt(nIndex) and SetAt(
nIndex, nValue) methods. They are implicitly called by using square brackets
objBinary[nIndex].

To initialize the binary data from a file use ReadFromFile(...) method. It allows
reading either whole file or the portion of it.

WriteToFile(...) and AppendToFile(...) methods allow creating or modifying
existing files with the contents of the binary wrapper.

Use UnsignedByte[nIndex] or SignedByte[nIndex] operators to get the
numeric value of the specified element of the wrapped data either as unsigned or as signed
value.

Use Byte[nStartIndex .. nEndIndex] to get the new binary wrapper object
initialized with the specified portion of wrapped data.

Use String property to use wrapper as a String. HexString allows working with
wrapper contents as with hex encoded data.

Methods

Interface()

Returns a short description of what you can do with this wrapper

Syntax
put binaryWrapper.Interface()

Return values

String

String value with short description of methods and properties provided by this wrapper

Remarks

This method does not clear the last error flag. It means this property does not affect the last
error information for the particular wrapper object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Clear()

Clears the contents of the wrapper object. Initializes the object to the default state.

Syntax
objBinary.Clear()

Allocate(nSize)

Clears the wrapped array and allocates requested number of bytes initialized by zeros.

Syntax
objBinary.Allocate(Integer nSize)

Parameters

nSize

The number of bytes to be allocated. Zero or positive integer number is expected.
Otherwise method will raise Lingo error "Value out of range".

Remarks

If there are no memory available to complete the allocation request, method sets the last
error information that is available via common error handling properties. If the allocation
request fails array stays in the empty initialized state.

Sample

Trying to allocate more memory than available:
Vb = xtra("VbScriptXtra")
objBinary = vb.CreateWrapper(#Binary)
objBinary.Allocate(1000000000)

put b.Failed
-- 1

put b.LastErrorCode
-- 14

put b.LastError
-- "Not enough storage is available to complete this operation."

Resize(nSize)

Reallocates wrapped array to be of requested number of bytes preserving existing data.

Syntax
objBinary.Resize(Integer nSize)

Parameters

nSize

The number of bytes to be allocated. Zero or positive integer number is expected.
Otherwise method will raise Lingo error "Value out of range".

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Remarks

If there are no memory available to complete the allocation request, method sets the last
error information that is available via common error handling properties. If the allocation
request fails array stays in the empty initialized state.

If the requested array size is smaller than the current size, the current data is truncated.

If the requested array size is larger then the current size, the extra bytes are initialized with
zeros.

GetAt(nIndex)

Gets the requested element of the array as an unsigned byte.

Syntax
nValue = objBinary.GetAt(Integer nIndex)

nValue = objBinary[Integer nIndex]

Parameters

nIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

Return values

Integer

Value of the requested byte. Returned value is unsigned, in the range from 0 to 255.

SetAt(nIndex, nValue)

Sets the requested element of the array to a new value.

Syntax
objBinary.SetAt(Integer nIndex, Integer nValue)

objBinary.SetAt(Integer nIndex, String strValue)

objBinary[Integer nIndex] = nValue

objBinary[Integer nIndex] = strValue

Parameters

nIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

nValue

New value to be set at the specified element. The low byte of the integer value is used.

strValue

New value to be set at the specified element. The first character of the string is used. If
empty string is passed, method will raise Lingo error "Integer expected".

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

ReadFromFile(strPath, nOffset, nBytesToRead)

Clears the current contents and fills it with a data from file starting at the specified offset.

Syntax
nBytesRead = objBinary.ReadFromFile(
 String strPath,
 Integer nOffset,
 Integer nBytesToRead)

Parameters

strPath

The path to a file to be red.

nOffset

Optional. The offset within a file in bytes where to start reading data. Positive offset is
calculated from the beginning of a file. Negative offset is calculated from the end of a
file. Zero means reading from the beginning of a file. Default is zero.

nBytesToRead

Optional. The maximum number of bytes to be red. Default is -1 that means reading
file from the specified offset till the end of file.

Return values

Integer

Number of bytes being actually red from a file.

Remarks

This method tries to open a file first. Then it calculates the resulting size of an array based
on the file size and specified parameters. It resizes the array to the calculated size. After
that it actually reads the file contents.

If there are no memory available to complete the allocation request or there are problems
reading the specified file method sets the last error information that is available via
common error handling properties.

WriteToFile(strPath)

Saves the contents of array into the specified file.

Syntax
nBytesWritten = objBinary.WriteToFile(String strPath)

Parameters

strPath

The path to a file to be written.

Return values

Integer

Number of bytes being actually written to a file. It should match the size of array.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Remarks

This method creates or overwrites any existing file with the data from array.

If there are problems writing to the specified file method sets the last error information that
is available via common error handling properties.

AppendToFile(strPath, nOffset, bSetEndOfFile)

Modifies the existing file with the data from array.

Syntax
nBytesWritten = objBinary.AppendToFile(
 String strPath,
 Integer nOffset,
 Boolean bSetEndOfFile)

Parameters

strPath

The path to an existing file to be written.

nOffset

Optional. The offset within a file in bytes where to start writing data. Positive offset is
calculated from the beginning of a file. Negative offset is calculated from the end of a
file. Zero means starting from the beginning of a file. If this parameter is missed data
will be appended to the end of file.

bSetEndOfFile

Optional. Indicates whether file should be truncated with the last written byte from the
array. It is only has sense if the array data is written in the middle of a file and the data
size added to starting offset does not exceed the length of a file. If this parameter is
True the length of file will be adjusted to the last written byte. If it is False the length
of file will stay the same.

Return values

Integer

Number of bytes being actually written to a file. It should match the size of array.

Remarks

If there are problems writing to the specified file method sets the last error information that
is available via common error handling properties.

Properties

Count

Returns the size of the wrapped data in bytes.

Syntax
nSize = objBinary.Count

nSize = objBinary.Count()

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Return values

Integer

Number of bytes that wrapped binary data occupies.

Size

Returns the size of the wrapped data in bytes. Same as Count.

Syntax
nSize = objBinary.Size

nSize = objBinary.Size()

Return values

Integer

Number of bytes that wrapped binary data occupies.

UnsignedByte[nIndex]

Gets or sets the requested element of the array as an unsigned byte.

Syntax
nValue = objBinary.UnsignedByte[Integer nIndex]

nValue = objBinary.Byte[Integer nIndex]

objBinary.Byte[Integer nIndex] = nValue

objBinary.UnsignedByte[Integer nIndex] = strValue

Parameters

nIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

nValue

New value to be set at the specified element. The low byte of the integer value is used.

strValue

New value to be set at the specified element. The first character of the string is used. If
empty string is passed, method will raise Lingo error "Integer expected".

Return values

Integer

Value of the requested byte. Returned value is unsigned, in the range from 0 to 255.

SignedByte[nIndex]

Gets or sets the requested element of the array as a signed byte.

Syntax
nValue = objBinary.SignedByte[Integer nIndex]

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

objBinary.SignedByte[Integer nIndex] = nValue

objBinary.SignedByte[Integer nIndex] = strValue

Parameters

nIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

nValue

New value to be set at the specified element. The low byte of the integer value is used.

strValue

New value to be set at the specified element. The first character of the string is used. If
empty string is passed, method will raise Lingo error "Integer expected".

Return values

Integer

Value of the requested byte. Returned value is signed, in the range from -128 to 127.

Byte[nStartIndex .. nEndIndex]

Gets the requested elements of the array as a new binary wrapper object.

Syntax
objBinary2 = objBinary.Byte[nStartIndex .. nEndIndex]

Parameters

nStartIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

nEndIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

Return values

Binary wrapper

New binary wrapper initialized with the specified range of data from original wrapper
object.

Char[nIndex]

Gets or sets the requested element of the array as a one character string.

Syntax
strChar = objBinary.Char[Integer nIndex]

objBinary.Char[Integer nIndex] = strValue

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Parameters

nIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

strValue

New value to be set at the specified element. The first character of the string is used. If
empty string is passed, method will raise Lingo error "Integer expected".

Return values

String

One character string value of the requested element.

Char[nStartIndex .. nEndIndex]

Gets the requested elements of the array as a string.

Syntax
strSubstring = objBinary.Char[nStartIndex .. nEndIndex]

Parameters

nStartIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

nEndIndex

One-based index of the required element. Integer value in the range from 1 to array size
is expected. Otherwise method will raise Lingo error "Value out of range".

Return values

String

String value from the specified range of array.

Media

Allows represent the contents of a wrapper as a media of member.

Syntax
hMedia = objBinary.Media
member("SomeMember").Media= hMedia

hMedia = member("SomeMember").Media
objBinary.Media = hMedia

Parameters

hMedia

The Lingo value that keeps "media" data of any cast member.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Return values

Object

The Lingo value that keeps "media" data.

Remarks

Note: this property does not modify the wrapped data in any way. It only represent it is a
"media" value by allowing Lingo to use it as real media values are used. Actually they can
only be assigned to other members.

Binary wrapper allows storing media data in external file or in database for example.

Picture

Allows represent the contents of a wrapper as a picture value.

Syntax
hPicture = objBinary.Picture
member("SomeMember").Picture = hPicture

hPicture = member("SomeMember").Picture
objBinary.Picture = hPicture

Parameters

hPicture

The Lingo value that keeps "picture" data of appropriate cast member.

Return values

Object

The Lingo value that keeps "picture" data.

Remarks

Note: this property does not modify the wrapped data in any way. It only represent it is a
"picture" value by allowing Lingo to use it as real picture values are used. Actually they
can only be assigned to other members.

Binary wrapper allows storing picture data in external file or in database for example.

String

Gets or sets the array data as a string.

Syntax
strValue = objBinary.String

objBinary.String = strValue

Parameters

strValue

The new string value that should be stored in a binary wrapper. The array is resized to
the length of the sting.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Return values

String

String representation of the data in array.

HexString

Gets or sets the array data as a hex encoded string, where every byte of array is encoded by
a couple of hexadecimal numbers.

Syntax
strHex = objBinary.HexString

objBinary.HexString = strHex

Parameters

strHex

The hex encoded string with data that should be placed in the wrapper. Characters other
then hexadecimal digits are ignored.

Return values

String

Hex encoded string representation of the data.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Date/Time Data Wrapper
Date/Time wrapper is provided by VbScriptXtra for handling date/time data. It is created
automatically by typecasting routines when VB date/time value is detected. This wrapper
provides standard for VB functionality for formatting date/time values and other features.

To explicitly create this wrapper use xtra-level CreateWrapper method:
dateWrapper = xtra("VbScriptXtra").CreateWrapper(#Date)

Newly created date/time wrapper is initialized with the current system time.

Use Interface() method to get the short description of methods and properties provided
by this object.

Use FormatDate and FormatTime methods to get date and time portions of the wrapped
value in text representation formatted according the specified format.

Properties provided by this object allows working with date/time value in float
representation and getting user friendly date/time value parts as year, month, day, etc.

Also the wrapper provides conversion date/time value from local user's time zone to
universal time and vice versa.

Methods

Interface()

Returns a short description of what you can do with this wrapper

Syntax
put dateWrapper.Interface()

Return values

String

String value with short description of methods and properties provided by this wrapper

FormatDate(strFormat)

Gets the formatted string representation of the date part of date/time value according to
current user’s locale.

Syntax
strDate = dateWrapper.FormatDate(String strFormat)

Parameters

strFormat

Optional. Format string for example "DD/MM/YY". See remarks for more details.

Return values

String

String representation of the date/time value formatted according to the specified format.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Remarks

If the method is called without parameters, it uses default short date representation from
user’s locale.

Format string consists of following elements.

Element Meaning
d Day of month as digits with no leading zero for single-digit days.
dd Day of month as digits with leading zero for single-digit days.
ddd Day of week as a three-letter abbreviation.
dddd Day of week as its full name.
M Month as digits with no leading zero for single-digit months.
MM Month as digits with leading zero for single-digit months.
MMM Month as a three-letter abbreviation.
MMMM Month as its full name.
y Year as last two digits, but with no leading zero for years less than 10.
yy Year as last two digits, but with leading zero for years less than 10.
yyyy Year represented by full four digits.
gg Period/era string. This element is ignored if the date to be formatted does

not have an associated era or period string.

Note: format string elements are case-sensitive.

Characters that do not match any of format string elements will appear at the same location
in the output string.

Characters in the format string that are enclosed in single quotation marks will appear in
the same location and unchanged in the output string.

To include a single quote in the output string it should be entered twice and enclosed in a
couple of single quotation marks. So it comes four times. For example to get "Aug'31"
use format string "MMM''''dd".

FormatTime(strFormat)

Gets the formatted string representation of the time part of date/time value according to
current user’s locale.

Syntax
strTime = dateWrapper.FormatDate(String strFormat)

Parameters

strFormat

Optional. Format string for example "DD/MM/YY". See remarks for more details.

Return values

String

String representation of the date/time value formatted according to the specified format.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Remarks

If the method is called without parameters, it uses default short date representation from
user’s locale.

Format string consists of following elements.

Element Meaning

h Hours with no leading zero for single-digit hours; 12-hour clock.
hh Hours with leading zero for single-digit hours; 12-hour clock.
H Hours with no leading zero for single-digit hours; 24-hour clock.
HH Hours with leading zero for single-digit hours; 24-hour clock.
m Minutes with no leading zero for single-digit minutes.
mm Minutes with leading zero for single-digit minutes.
s Seconds with no leading zero for single-digit seconds.
ss Seconds with leading zero for single-digit seconds.
t One character time-marker string, such as A or P.
tt Multicharacter time-marker string, such as AM or PM.
h Hours with no leading zero for single-digit hours; 12-hour clock.
hh Hours with leading zero for single-digit hours; 12-hour clock.

Note: format string elements are case-sensitive.

Characters that do not match any of format string elements will appear at the same location
in the output string.

Characters in the format string that are enclosed in single quotation marks will appear in
the same location and unchanged in the output string.

To include a single quote in the output string it should be entered twice and enclosed in a
couple of single quotation marks. So it comes four times. For example to get "22:01'51"
use format string "HH':'mm''''ss".

MonthName(nMonth, bAbbreviated)

Gets the name of the month in abbreviated or complete form.

Syntax
strMonthName = dateWrapper.MonthName(
 Integer nMonth,
 Boolean bAbbriviated)

Parameters

nMonth

Integer month number in the range from 1 to 12.

bAbbriviated

Optional. If true the abbreviated form of the month name is returned. If false or
skipped then unabbreviated form of the month name is returned.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Return values

String

String value with the name of the month.

WeekdayName(nDay, bAbbreviated, nFirstDayOfWeek)

Gets the name of the month in abbreviated or complete form.

Syntax
strDayName = dateWrapper.WeekdayName(
 Integer nDay,
 Boolean bAbbriviated,
 Integer nFirstDayOfWeek)

Parameters

nDay

Integer month number in the range from 1 to 7.

bAbbriviated

Optional. If true the abbreviated form of the month name is returned. If false or
skipped then unabbreviated form of the month name is returned.

nFirstDayOfWeek

Optional. Indicates the first day of week. 0 = system default, 1 = Sunday, 2 = Monday
etc. It has to be in the range from 0 to 7.

Return values

String

String value with the name of the specified day of week.

Properties

Value

Sets or gets the wrapped date/time value hold by the object.

Syntax
fltDate = dateWrapper.Value

dateWrapper.Value = fltDate

dateWrapper.Value = strDate

dateWrapper.Value = date(2004, 8, 31)

Parameters

fltDate

Float representation of the date/time value, representing a date between January 1, 100
and December 31, 9999, inclusive. The value 2.0 represents January 1, 1900; 3.0
represents January 2, 1900, and so on. Adding 1 to the value increments the date by a
day. The fractional part of the value represents the time of day. Therefore, 2.5

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

represents noon on January 1, 1900; 3.25 represents 6:00 A.M. on January 2, 1900, and
so on. Negative numbers represent the dates prior to December 30, 1899.

strDate

String date/time representation according to one of standard format for the current
locale. If VbScriptXtra failed to recognize date/time from the specified string, it sets the
last error flag for the date wrapper object.

Lingo date/time value

Wrapper can accept Lingo date/time values.

Return values

Float

Float representation of date/time value.

Sample

Float date/time representation allows simply date/time arithmetic operations. To calculate
how much time is between two date/time values, simply calculate a difference between
them. The code below calculates how many hours are between objDate1 and objDate2:
fltDif = objDate2.Value - objDate1.Value
fltOneHour = 1.0/24
nHours = integer(fltDif / fltOneHour)

Year

Gets the year part of the date/time value.

Syntax
nYear = dateWrapper.Year

Return values

Integer

Integer year part of the date/time value.

Month

Gets the month part of the date/time value.

Syntax
nMonth = dateWrapper.Month

Return values

Integer

Integer month part of the date/time value. January = 1, February = 2, and so on.

MonthName

Gets the month part of the date/time value as a name of the month.

Syntax
strMonth = dateWrapper.MonthName

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Return values

String

String month part of the date/time value as a name of the month.

Weekday

Gets the weekday part of the date/time value.

Syntax
nWeekday = dateWrapper.Weekday

Return values

Integer

Integer weekday part of the date/time value. Sunday = 0, Monday = 1, and so on.

WeekdayName

Gets the weekday part of the date/time value as a name of the weekday.

Syntax
strWeekday = dateWrapper.WeekdayName

Return values

String

String weekday part of the date/time value as a name of the weekday.

Day

Gets the day of month part of the date/time value.

Syntax
nDay = dateWrapper.Day

Return values

Integer

Integer day of month part of the date/time value.

Minute

Gets the minutes part of the date/time value.

Syntax
nMinute = dateWrapper.Minute

Return values

Integer

Integer minutes part of the date/time value.

Second

Gets the seconds part of the date/time value.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Syntax
nSecond = dateWrapper.Second

Return values

Integer

Integer seconds part of the date/time value.

Millisecond

Gets the milliseconds part of the date/time value.

Syntax
nMilliseconds = dateWrapper.Milliseconds

Return values

Integer

Integer milliseconds part of the date/time value.

Local

Gets the date/time value shifted to the local time zone.

Syntax
objLocalTime = dateWrapper.Local

Return values

Date/time wrapper

New date/time wrapper that holds the date/time value shifted from universal time to
local time.

Remarks

This property allows getting user's local time from universal time. It treats currently hold
time as universal. So it calculates time shift between universal time zone and user's time
zone and adds this difference to the time value. New date/time value is returned as a new
date/time wrapper object.

Universal

Gets the date/time value shifted to the universal time zone.

Syntax
objUniversalTime = dateWrapper.Universal

Return values

Date/time wrapper

New date/time wrapper that holds the date/time value shifted from local time to
universal time.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Remarks

This property allows getting universal time from user's local time. It treats currently hold
time as user's local time. So it calculates time shift between universal time zone and user's
time zone and subtracts this difference from the time value. New date/time value is
returned as a new date/time wrapper object.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Registry Key Wrapper
Registry key wrapper is provided by VbScriptXtra for handling operations with system
registry. It is useful for checking some installation details of ActiveX or OLE objects. Also
it can be used for storing user's preferences in system registry.

To explicitly create this wrapper use xtra-level CreateWrapper method:
registryKeyWrapper = xtra("VbScriptXtra").CreateWrapper(#RegistryKey)

Newly created Registry key wrapper is not initialized. It has to be opened first.

Once registry key is opened, its named values are available either by name or by index via
array-like syntax or GetAt and SetAt methods. Names of values that belong to the
registry keys are available through ValueNames property.

To open subordinate key use OpenSubKey method. Names of subordinate keys are
available through SubKeyNames property.

Methods

Interface()

Returns a short description of what you can do with this wrapper

Syntax
put registryKeyWrapper.Interface()

Return values

String

String value with short description of methods and properties provided by this wrapper

Open(strParent, strName, symAccessType, bCreate)

Opens the specified registry key using requested access type.

Syntax
registryKeyWrapper.Open(
 String strParent,
 String strSubKeyName,
 Optional Symbol symAccessType,
 Optional Boolean bCreateIfMissing)

Parameters

strParent

String name of the basic root registry keys or another Registry key wrapper to serve as
parent key for the required subordinate key. It could be one of the following:

Value Meaning
"HKEY_CLASSES_ROOT" Basic types (or classes) of documents and the

properties associated with those types.
"HKEY_CURRENT_USER" Preferences of the current user.
"HKEY_LOCAL_MACHINE" Physical state of the computer and installed hardware

and software.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Value Meaning
"HKEY_USERS" Default user configuration for new users on the local

computer and the user configuration for the current
user.

"HKEY_CURRENT_CONFIG" Contains information about the current hardware
profile of the local computer system.

strSubKeyName

String with the path and name of the specific key to open.

symAccessType

Optional. Symbol or Integer value indicating the type of access requested. This value
could be one of the following:

Value Meaning
#KEY_ALL_ACCESS All types of access is requested.
#KEY_READ Reading operations are requested.
#KEY_WRITE Writing operations are requested
Integer value Bitwise mask of requested operations.

If this parameter is missed or set to VOID, #KEY_ALL_ACCESS is used.

bCreateIfMissing

Optional. If true and the requested key is not found then this method will try to create
the specified key. By default it is true unless symAccessType is set to #KEY_READ.

Return values

VOID

Does not return anything.

Error codes

The method may return several useful error codes through wrapper.LastErrorCode
property. Error codes are coming from Win32 API. Some of them are:

Name Value Meaning
ERROR_FILE_NOT_FOUND 2 The requested key is not found.
ERROR_ACCESS_DENIED 5 Try using #KEY_READ as symAccessType.
ERROR_INVALID_HANDLE 6 Wrapper key used as parent is not a valid registry

key handle.

Sample

The sample looks for applications that start with every system boot right after user login.
vb = xtra("VbScriptXtra")

-- Create wrapper
key = vb.CreateWrapper(#RegistryKey)

-- Open it
key.Open("HKEY_LOCAL_MACHINE", \
 "SOFTWARE\Microsoft\Windows\CurrentVersion\Run", \
 #KEY_READ)

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

if key.Failed then exit

-- Iterate through values of the key
repeat with i = 1 to key.count
 put key[i]
end repeat

OpenSubKey(strName, symAccessType, bCreate)

Opens the specified subordinate registry key using requested access type and returns it
within new Registry key wrapper.

Syntax
subKey = registryKeyWrapper.OpenSubKey(
 String strSubKeyName,
 Optional Symbol symAccessType,
 Optional Boolean bCreateIfMissing)

Parameters

strSubKeyName

String with the path and name of the specific key to open.

symAccessType

Optional. Symbol or Integer value indicating the type of access requested. This value
could be one of the following:

Value Meaning
#KEY_ALL_ACCESS All types of access is requested.
#KEY_READ Reading operations are requested.
#KEY_WRITE Writing operations are requested
Integer value Bitwise mask of requested operations.

If this parameter is missed or set to VOID, #KEY_ALL_ACCESS is used.

bCreateIfMissing

Optional. If true and the requested key is not found then this method will try to create
the specified key. By default it is true unless symAccessType is set to #KEY_READ.

Return values

Registry key wrapper

New Registry key wrapper that holds the requested subordinate registry key.

Error codes

The method may return several useful error codes through wrapper.LastErrorCode
property. Error codes are coming from Win32 API. Some of them are:

Name Value Meaning
ERROR_FILE_NOT_FOUND 2 The requested key is not found.
ERROR_ACCESS_DENIED 5 Try using #KEY_READ as symAccessType.
ERROR_INVALID_HANDLE 6 Wrapper is not opened.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Sample

The sample looks shows extensions and their master keys.
vb = xtra("VbScriptXtra")

-- Create wrapper
key = vb.CreateWrapper(#RegistryKey)

-- Open it
key.Open("HKEY_CLASSES_ROOT", "", #KEY_READ)

if key.Failed then exit

-- Iterate through subkeys of the key
lstSubKeyNames = key.SubKeyNames
repeat with i = 1 to lstSubKeyNames.count

 -- Check for the first dot '.'
 if lstSubKeyNames[i].char[1] = "." then
 subKey = key.OpenSubKey(lstSubKeyNames[i], #KEY_READ)

 if key.succeeded then
 defaultValue = subKey.value

 if subKey.succeeded then
 -- Output the key name and its default value
 put lstSubKeyNames[i] & ": " & subKey.value
 else if subKey.LastErrorCode = 2 then
 -- There is no defaul value
 put lstSubKeyNames[i] & ": " & "<No value>"
 else
 -- Something is wrong
 put lstSubKeyNames[i] & ": " & subKey.LastError
 end if

 end if
 end if

end repeat

CreateSubKey(strSubKeyName)

Creates the specified subordinate registry key and returns it within new Registry key
wrapper.

Syntax
subKey = registryKeyWrapper.CreateSubKey(
 String strSubKeyName)

Parameters

strSubKeyName

String with the path and name of the specific key to create.

Return values

Registry key wrapper

New Registry key wrapper that holds the requested subordinate registry key.

Error codes

The method may return several useful error codes through wrapper.LastErrorCode
property. Error codes are coming from Win32 API. Some of them are:

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Name Value Meaning
ERROR_FILE_NOT_FOUND 2 The requested key is not found.
ERROR_ACCESS_DENIED 5 You are not allowed to perform the operation.
ERROR_INVALID_HANDLE 6 Wrapper is not opened.

DeleteSubKey(strSubKeyName)

Deletes the specified subordinate registry key.

Syntax
registryKeyWrapper.DeleteSubKey(
 String strSubKeyName)

Parameters

strSubKeyName

String with the path and name of the specific key to delete.

Return values

VOID

Does not return anything.

Error codes

The method may return several useful error codes through wrapper.LastErrorCode
property. Error codes are coming from Win32 API. Some of them are:

Name Value Meaning
ERROR_FILE_NOT_FOUND 2 The requested key is not found.
ERROR_ACCESS_DENIED 5 You are not allowed to perform the operation.
ERROR_INVALID_HANDLE 6 Wrapper is not opened.

DeleteValue(strValueName)

Deletes the specified named value of the registry key.

Syntax
registryKeyWrapper.DeleteValue(
 String strValueName)

Parameters

strValueName

String with the name of the specific value to delete.

Return values

VOID

Does not return anything.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Error codes

The method may return several useful error codes through wrapper.LastErrorCode
property. Error codes are coming from Win32 API. Some of them are:

Name Value Meaning
ERROR_FILE_NOT_FOUND 2 The requested key is not found.
ERROR_ACCESS_DENIED 5 You are not allowed to perform the operation.
ERROR_INVALID_HANDLE 6 Wrapper is not opened.

GetAt(Index)

Gets the requested named value of the key.

Syntax
val = registryKeyWrapper.GetAt(Index)

val = registryKeyWrapper[Index]

Parameters

Integer Index

One-based index of the value to retrieve. Integer value in the range from 1 to the
number of values is expected.

String Index

The name of the value to retrieve.

Return values

Returns the value of the key depending on the data type stored in registry. The table below
shows mapping between registry types and Lingo types for the typecasting operation of the
Registry key wrapper:

Registry type Lingo type
REG_SZ, REG_EXPAND_SZ String
REG_DWORD Integer
REG_BINARY Binary data wrapper

Other registry data types Binary data wrapper

Error codes

The method may return several useful error codes through wrapper.LastErrorCode
property. Error codes are coming from Win32 API and the wrapper itself. Some of them
are:

Name Value Meaning
E_VB_CANNOT_HANDLE_DATA_TYPE -2129330175 VbScriptXtra cannot handle this

data type.
ERROR_NO_MORE_ITEMS 259 No more data is available

(probably index is out of
bounds).

ERROR_FILE_NOT_FOUND 2 The requested key is not found.
ERROR_INVALID_HANDLE 6 Wrapper is not opened.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

SetAt(Index, Value, symType)

Sets the requested value of the key to a new value.

Syntax
registryKeyWrapper.SetAt(Index, Value, Optional Symbol symType)

registryKeyWrapper[Index] = Value

Parameters

Integer Index

One-based index of the value to retrieve. Integer value in the range from 1 to the
number of values is expected.

String Index

The name of the value to set.

Value

New value to be set at the specified key's value. The table below shows default
mapping between registry types and Lingo types for the typecasting operation of the
Registry key wrapper:

Lingo type Registry type
String REG_SZ
Integer REG_DWORD
Binary data wrapper REG_BINARY

If the symType parameter is specified it overrides the default settings.

symType

The type of data to be set for a value. It can be one of the following values:

Lingo value Meaning
#REG_SZ Normal string
#REG_EXPAND_SZ String that contains unexpanded

references to environment variables (for
example, "%PATH%").

#REG_BINARY Binary data in any form
#REG_DWORD Integer 32-bit value
Integer value See MSDN for other possible values

Remarks

This method has some specific behavior while handling which registry data type to assign
to the value. The default behavior is applied if symType argument is not specified.

Default behavior: Method checks whether the requested value is already exists. If so, it
reads its registry data type and writes new value over existing data keeping the data type
unchanged. If the value is the new one, method uses default registry data types according
to the type of Lingo data passed to the method, as described in the Value parameter above.

Default behavior take place with any way of calling this method, unless symType is
specified.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Note: This method is called internally by both Director and other wrapper properties. All
statements below cause this method to be called with symType omitted:
registryKeyWrapper[Index] = newValue
registryKeyWrapper.Value[Index] = newValue
registryKeyWrapper.Value = newValue

If symType is specified, its value is used as registry data type in any case.

Default behavior allows making most operations without worrying about data types of
registry values. If existing values have to be overwritten, their data types stay unchanged.
New values are added with correct data type based on Lingo value passed to the method.

Properties

Count

Returns the number of named values for the wrapped registry key.

Syntax
nCount = registryKeyWrapper.Count

nCount = registryKeyWrapper.Value.Count

Return values

Integer

Number of named values for the wrapped registry key.

Value

Sets or gets the default value for the wrapped registry key.

Syntax
defaultValue = registryKeyWrapper.Value

registryKeyWrapper.Value = defaultValue

Remarks

It is the same as using registryKeyWrapper.GetAt("") for reading default value and
registryKeyWrapper.SetAt("", val) for writing default value.

Value[index]

Sets or gets the specified value for the wrapped registry key.

Syntax
value = registryKeyWrapper.Value[index]

value = registryKeyWrapper[index]

registryKeyWrapper.Value[index] = newValue

registryKeyWrapper[index] = newValue

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Parameters

Integer Index

One-based index of the value to retrieve. Integer value in the range from 1 to the
number of values is expected.

String Index

The name of the value to retrieve.

Remarks

It is the same as using registryKeyWrapper.GetAt(index) for reading specified
value and registryKeyWrapper.SetAt(index, newValue) for writing specified
value.

Using the property without index returns the value of the default key value (if any).

ValueType[index]

Returns the registry type of the specified value for the wrapped registry key.

Syntax
type = registryKeyWrapper.ValueType[index]

type = registryKeyWrapper.ValueType

Parameters

Integer Index

One-based index of the value to retrieve. Integer value in the range from 1 to the
number of values is expected.

String Index

The name of the value to retrieve.

Parameters

Symbol

One of symbols below that describes the data type of the value.

Lingo Value Meaning
#REG_SZ Normal string
#REG_EXPAND_SZ String that contains unexpanded

references to environment variables (for
example, "%PATH%").

#REG_BINARY Binary data in any form
#REG_DWORD Integer 32-bit value

Integer

Integer value for rarely used registry data types. See MSDN for details.

Remarks

Using the property without index returns the type of the default key value (if any).

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

ValueNames

Returns the list of value names for the wrapped registry key.

Syntax
lstValueNames = registryKeyWrapper.ValueNames

Return values

Linear list

A Lingo list with names of values for the wrapped registry key.

SubKeyNames

Returns the list of subordinate key names for the wrapped registry key.

Syntax
lstSubKeyNames = registryKeyWrapper.SubKeyNames

Return values

Linear list

A Lingo list with names of subordinate keys for the wrapped registry key.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Xtra-level methods
Init(nDebug)

Performs generic xtra initialization. Allows setting debugging mode as a default for newly
created wrappers.

Syntax
bSuccess = xtra("VbScriptXtra").Init(Integer nDebug)

Parameters

nDebug

Optional. Debugging mode for newly created objects. This parameter can be one of the
following values.

Value Meaning
0 No debugging support. Release behavior.
1 Simple debugging. Any error is automatically printed in Messages

window.
2 Advanced debugging. When any error is occurred, the xtra calls movie

level handler VbScriptXtra_DebugEvent(strMes, nCode).

Return values

If the method succeeds, it returns true. Otherwise it returns false.

Remarks

Every wrapper object created by VbScriptXtra can detect errors returned by wrapped
objects. Internal VbScriptXtra errors (type casting problems etc) could happen too.
Normally these errors could be trapped programmatically by checking object last error
status after any meaningful call to the object. See error handling and debugging support for
more details.

Note: This method does not affect objects that already exist at the time of calling this
method. You may use DebugMode property to change the debugging mode of the
particular object directly.

CreateObject(strProgId)

Creates a new instance of the object specified by its ProgId.

Syntax
objAuto = xtra("VbScriptXtra").CreateObject(String strProgId)

Parameters

strProgId

ProgId string value specifying which object to create. For example, use
"Word.Application" to create a new instance of Microsoft Word.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Return values

Object

If object is created successfully the method returns the new instance of VbScriptXtra
wrapper object, that holds newly created automation object of requested ProgId.

String

If the xtra failed to create requested object the method returns a string with error
description.

Remarks

This method is an analogue to Visual Basic's CreateObject. It is used to create new
automation objects. Therefore, it is a main entry point while using VbScriptXtra. Usual
usage scenario starts from calling this method to create an instance of external application
or another automation object and then operating on that object.

Sample

This sample creates an instance of Internet Explorer and then makes it to navigate to
www.xtramania.com, then shows it in full screen mode without menu bar, toolbar, status
bar. Then it waits while downloading is still in progress and when it is done IE appears to a
user.
on navigate
 vb = xtra("VbScriptXtra")

 -- Creating a new instance of Internet Explorer
 ie = vb.CreateObject("InternetExplorer.Application")

 -- Navigate to URL
 ie.navigate("www.XtraMania.com")

 -- ie is hidden now, making it fullscreen
 ie.fullscreen=true

 -- hiding extra interface elements
 ie.menubar=false
 ie.toolbar=false
 ie.statusbar=false

 -- Waiting while page is complete
 repeat while ie.busy
 put "Waiting for IE"
 end repeat

 -- Here we are, ready and fullscreen!
 ie.visible=true

 put "Ops!"
end

GetObject(strProgId)

Gets a running current instance of the object specified by its ProgId.

There are three semantics of calling this method in VB. This xtra-level method represents
the following VB statement:
set obj = GetObject(, strProgId)

Comma before strProgId means that the first parameter of the method is missed.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Syntax
objAuto = xtra("VbScriptXtra").GetObject(String strProgId)

Parameters

strProgId

ProgId string value specifying which object to get. For example, use
"Word.Application" to get a currently running instance of Microsoft Word.

Return values

Object

If object is got successfully the method returns the new instance of VbScriptXtra
wrapper object that holds currently active automation object of requested ProgId.

String

If the xtra failed to get requested object the method returns a string with error
description.

Remarks

This method will not try to create a new instance of requested object if there is no active
one. So it can be used to check whether there is a running application of requested ProgId
or not.

Sample

This sample checks whether there is an instance of Microsoft Word running. If so it
attaches to it and returns, otherwise it creates a new Microsoft Word instance.
on GetWordApplication
 vb = xtra("VbScriptXtra")

 -- Creating a new instance of Microsoft Word
 w = vb.GetObject("Word.Application")

 if not objectP(w) then
 w = vb.CreateObject("Word.Application")
 end if

 return w
end

GetObject2(strPath, strProgId)

Gets the object from a combination of file and a ProgId.

There are three semantics of calling this method in VB. This xtra-level method represents
two following VB statement:
set obj = GetObject(strPath, strProgId)

set obj = GetObject(strPath)

The first statement is used to create an instance of the specified ProgId and then make it to
load the specified file.

The second statement is used to create an object either from file or from user friendly name
of the object and/or its items.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Syntax
ObjAuto = xtra("VbScriptXtra").GetObject2(
 String strPath,
 String strProgId)

Parameters

strPath

Path to a file that has to be loaded or other object specification.

strProgId

ProgId string value specifying which object to get. For example, use
"Word.Document" to get a Microsoft Word document loaded from the specified file.

Return values

Object

If object is got successfully the method returns the new instance of VbScriptXtra
wrapper object that holds currently active automation object of requested ProgId.

String

If the xtra failed to get requested object the method returns a string with error
description.

Remarks

Sample

This sample checks whether there is an instance of Microsoft Word running. If so it
attaches to it and returns, otherwise it creates a new Microsoft Word instance.
on GetWordDocument
 vb = xtra("VbScriptXtra")

 -- Getting a Word document from file
 doc = vb.GetObject("D:\file.doc", "Word.Document")

 doc.Application.visible = true

 return doc
end

Version()

Syntax
strVersion = xtra("VbScriptXtra").Version()

Return values

String

Version string in a form of 5 point delimited items: "VbScriptXtra.2.1.1.71".

The first item is the xtra's name "VbScriptXtra".

The second item is the major xtra's version.

The third item is the subversion number. It indicates noticeable changes.

The forth item is the minor version number. It indicates minor changes.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

The last item is the absolute build number. It is auto incremented with every release
build of the xtra.

SetBusyHandler(objHandler)

Sets the xtra's level handler of "Busy" states.

Busy state can happen when external application cannot handle Automation requests from
its clients. For example, Microsoft Excel cannot respond to Automation commands while it
shows an Open/Save dialog to a user. Normally application responds to calling client "I am
busy, retry later". Client behavior could decide what to do: either just wait for some time or
inform user that external application is busy and probably it waits for user input. This
notification is normally done via system level standard busy state dialog.

Another key point with busy states happens when user tired of waiting for something and
starts clicking mouse and pressing keys. COM allows detecting these events from user and
asks client application what to do either wait further, or show busy state notification or
terminate the call to the server.

So this method allows customizing how to handle busy states. See remarks section for
further details.

Syntax
bSucceeded = xtra("VbScriptXtra").SetBusyHandler(
 Object objHandler)

Parameters

objHandler - Parent script instance or VOID

An instance of a parent script that will handle the "Busy" states or Void to reset the
handler to xtra's default state.

Return values

true

If succeeded.

false

Otherwise.

Remarks

This method sets the instance of a parent script as a "busy state" handle, which is called
when xtra detects busy condition.

When COM server returns the busy state, xtra calls a method of a handler instance:
on ServerBusy me, milliseconds

Where milliseconds indicate the time elapsed since the initial call of the method. The
handler can return:

Value Meaning
-1 Cancels the call, it most probably produces a Lingo error.
0 Immediately retry the call.
1 Displays system "Server Busy" dialog.

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

Value Meaning
> 1 Retry the call in the specified number of milliseconds.

While call to COM server is in progress, xtra can detect whether any messages are waiting
to be processed by Director Application. If so, it calls another method of a handler
instance:
on MessagePending me, milliseconds, category

Where milliseconds indicate a time elapsed since initial call to the server, category
indicates the type of waiting message. Category can be one of the following values.

Value Meaning
0 Menu or other Windows-level message.
1 Keyboard message.
2 Mouse message.

This handler should return either 0 (false) to do nothing or 1(true) to display a busy dialog.

To use xtra's default handler set it to void:
xtra("VbScriptXtra").SetBusyHandler(void)

The xtra's default behavior is to wait 10 seconds on ServerBusy by retrying call every
200 milliseconds. Then xtra shows the "Busy" dialog. If important messages (system-level,
mouse, keyboard) are detected while COM call is in progress for more than 3 seconds, the
xtra also shows "Busy" dialog.

Sample

This sample shows how custom "Busy" state handler could look like. To make it the xtra's
handler use:

objHandler = script("BusyHandler").new()
bSucceeded = xtra("VbScriptXtra").SetBusyHandler(objHandler)

This sample handler waits for 25 seconds while server does not respond and then informs
user via system level busy state dialog.

If any incoming message is received while waiting for server to respond, handler checks
the type of message. If it is windows-level message, it informs user, otherwise puts to the
Messages what is happening.
-- Parent script
on new me
 return me
end

-- Called when server application returned a busy status
on ServerBusy me, milliseconds
 if milliseconds > 25000 then
 return 1
 end if

 return 1000
end

-- Called when messages come to Director
on MessagePending me, milliseconds, category
 case category of
 0:

 VbScriptXtra version 2.1

 © Eugene Shoustrov, 2004-2005

 put "Menu or other Windows-level message"
 return 1
 1:
 put "KeyPressed"
 return 0
 2:
 put "Mouse:"&&the mouseLoc
 return 0
 end case

 return 0
end

CreateWrapper(symWrapperType)

Creates a new instance of VbScriptXtra wrapper for the requested custom data type.

Syntax
obj = xtra("VbScriptXtra").CreateWrapper(Symbol symType)

Parameters

symType

Indicates which wrapper to create. This parameter can be one of the following values.

Value Meaning
#Date The wrapper for VB Date/Time values.
#Binary The wrapper for binary data including BLOB. Previous versions of

VbScriptXtra used BinaryXtra that implemented this kind of wrappers.
VbScriptXtra v2 includes binary data wrapper.

#RegistryKey The wrapper for Registry keys.

Return values

Object

A newly created instance of the requested data type or

String

String value with error description.

Remarks

Normally these wrappers are created by VbScriptXtra internally when it detects the data of
specific type. For example, when getting a value from database field of type BLOB,
VbScriptXtra returns to Lingo a binary data wrapped to the wrapper instance of type
#Binary.

To store BLOB data into database, you should create a Binary wrapper first, then fulfill it
with a data and then assign the wrapper to the respective field of a recordset object (ADO).

Date/Time wrapper is useful for handling Date/Time values. It offers a lot of functionality
of date/time values representation. It is created automatically when VbScriptXtra detects a
data of type Date/Time.

Registry key wrapper is used for handling operations with system Registry.

	VbScriptXtra
	About VbScriptXtra
	About ActiveCompanionSet
	What is New in VbScriptXtra Version 2
	'ActiveCompanionSet' Xtras License Agreement

	VbScriptXtra Programmer's Guide
	How to Use VbScriptXtra
	Typecasting
	ProgId
	Creating Object
	Object Description

	Debugging and Errors Handling
	Lingo Errors
	Programming Errors
	Simple Debugging Mode
	Advanced Debugging Mode
	Using Put Command
	Using Debugger and Object Inspector

	Samples
	ADO Databasing
	Creating Recordset Object
	Choosing which Database to Open
	Opening Recordset Object
	Getting Data from Database via Recordset
	Modifying Data via Recordset
	Closing Recordset
	Connection Object
	Object's Dynamic Properties
	Using Transactions

	Save and Compact Microsoft Access Database
	Automating Microsoft PowerPoint
	Automating Microsoft Word
	Automating Microsoft Excel
	WMI Scripting

	VbScriptXtra Programmer's Reference
	Wrapping Objects
	Common Features of Wrapping Objects
	Error Handling Support
	Succeeded
	Failed
	LastErrorCode
	LastError

	Debugging Support
	DebugMode

	Type Casting Routines
	COM Automation to Lingo
	Lingo to COM Automation

	Unicode Conversion Support
	CodePage

	Automation Object Wrapper
	Methods
	Interface()
	GetEnum(symName)
	Calling Other Methods

	Properties
	EventsHandler
	__NewEnum
	Getting Other Properties
	Setting Other Properties

	Technical details
	Underscore Handling
	Passing Parameters by Reference
	Optional and Missing Method's Arguments
	Named Method's Arguments
	Using Wrapper Instance as First Argument of a Method
	Cascading Methods and Properties in Director 7
	Using Square Brackets

	Binary Data Wrapper
	Methods
	Interface()
	Clear()
	Allocate(nSize)
	Resize(nSize)
	GetAt(nIndex)
	SetAt(nIndex, nValue)
	ReadFromFile(strPath, nOffset, nBytesToRead)
	WriteToFile(strPath)
	AppendToFile(strPath, nOffset, bSetEndOfFile)

	Properties
	Count
	Size
	UnsignedByte[nIndex]
	SignedByte[nIndex]
	Byte[nStartIndex .. nEndIndex]
	Char[nIndex]
	Char[nStartIndex .. nEndIndex]
	Media
	Picture
	String
	HexString

	Date/Time Data Wrapper
	Methods
	Interface()
	FormatDate(strFormat)
	FormatTime(strFormat)
	MonthName(nMonth, bAbbreviated)
	WeekdayName(nDay, bAbbreviated, nFirstDayOfWeek)

	Properties
	Value
	Year
	Month
	MonthName
	Weekday
	WeekdayName
	Day
	Minute
	Second
	Millisecond
	Local
	Universal

	Registry Key Wrapper
	Methods
	Interface()
	Open(strParent, strName, symAccessType, bCreate)
	OpenSubKey(strName, symAccessType, bCreate)
	CreateSubKey(strSubKeyName)
	DeleteSubKey(strSubKeyName)
	DeleteValue(strValueName)
	GetAt(Index)
	SetAt(Index, Value, symType)

	Properties
	Count
	Value
	Value[index]
	ValueType[index]
	ValueNames
	SubKeyNames

	Xtra-level methods
	Init(nDebug)
	CreateObject(strProgId)
	GetObject(strProgId)
	GetObject2(strPath, strProgId)
	Version()
	SetBusyHandler(objHandler)
	CreateWrapper(symWrapperType)

