

 © Eugene Shoustrov, 2005

OLE xtra
Version 1.2

 www.xtramania.com

http://www.xtramania.com/

 © Eugene Shoustrov, 2005

All trademarked names mentioned in this document and product are used for editorial
purposes only, with no intention of infringing upon the trademarks.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

OLE xtra .. 1

About OLE xtra ... 1

About ActiveCompanionSet ... 1

What is the Difference ... 1

'ActiveCompanionSet' Xtras License Agreement .. 2

OLE xtra Programmer's Guide... 5

Inserting new OLE cast member.. 5

Media editor ... 5

Scripting operations... 7

Creating new OLE cast member..8
Inserting OLE Object..9

By User Choice..9
From File ...9
New Empty Object of Specified Type...9

Editing OLE object..10
Editing OLE object with VbScriptXtra ..11
OLE object running on stage..12
Controlling OLE object appearance..13
Debugging and Errors Handling..14

Lingo Errors...14
Programming Errors ..14
Simple Debugging Mode...14
Advanced Debugging Mode..14

OLE xtra Programmer's Reference .. 16

Asset-level ...17
Error handling support...17

Succeeded ..17
Failed...17
LastErrorCode...18
LastError ...18

Debugging Support..19
DebugMode ...19

Xtra Specific Properties...20
Version...20
CLSID ..20
ProgId..20
OLEState..21
StoredImageType ...21
DrawWithOLE...22
OLEMediaChanged ...22
Verbs..23

Xtra Specific Methods...23

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Open()..23
GetObject() ..24
Save(symImageType) ...24
Close(bSave)..25
LoadOLEObject() ..26
UnloadOLEObject() ..26
DeActivate()...26
InsertOLE()..27
DoVerb(nVerb, rcFrame) ..27

Actor-level ..29
Xtra Specific Methods...29

Activate() ...29
DeActivate()...30

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

OLE xtra
About OLE xtra

OLE xtra extends the Macromedia Director's Lingo functionality with capability to handle
OLE embedded objects.

OLE xtra is available for Macromedia Director (v7 and later) under Windows
95/98/ME/NT/2000/XP.

OLE xtra is not available for Shockwave.

Note: All trademarked names mentioned in this document and product are used for
editorial purposes only, with no intention of infringing upon the trademarks.

About ActiveCompanionSet
OLE xtra is shipped within ActiveCompanionSet. It is a bundle of xtras that provide COM,
OLE and ActiveX support for Macromedia Director. The set currently includes
VbScriptXtra, OLE xtra and ObjectBrowserXtra. Further versions of the
ActiveCompanionSet will include ActiveX visual controls support.

What is the Difference
Macromedia Director ships with its own OLE xtra. ActiveCompanionSet provides even
better support for OLE embedded objects and scripting. Below is the list of key features of
the OLE xtra from ActiveCompanionSet.

• Stores OLE object data together with bitmap or metafile view.

• Draws object either with native OLE handler of the parent application (if any) or
uses stored object’s view.

• Can activate embedded OLE object either in-place (right on stage as always on top
sprite) or with external native application window.

• Supports scripting of OLE operations: creating and editing OLE objects at run-time
with the native parent application (if any).

• Provides even further scripting support by means of VbScriptXtra (if embedded
object supports scripting). For example with Microsoft Word embedded document
it is possible to open embedded object with Word, edit it with Lingo scripting and
then save it back to the Director’s cast member.

• Provides scripting control for OLE objects running right on stage. For example
with PowerPoint embedded presentation it is possible to place presentation on stage
and run (or edit) it with Lingo.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

'ActiveCompanionSet' Xtras License Agreement
This user license agreement (the AGREEMENT) is an agreement between you (individual
or single entity) and MediaMacros, Inc. and Eugene Shoustrov for the included
'ActiveCompanionSet' XTRAS (the SOFTWARE) that are accompanying this
AGREEMENT.

The SOFTWARE is the property of Eugene Shoustrov and is protected by copyright laws
and international copyright treaties. The SOFTWARE is not sold, it is licensed.

If you accept the terms and conditions of this AGREEMENT, then you are granted the
FREE LICENCE.

I. FREE LICENCE

The FREE LICENCE allows using any functionality of the SOFTWARE except for COM
Automation objects handled by Automation wrapper of VbScriptXtra and/or OLE objects
handled by OLE xtra.

The FREE LICENCE allows using COM Automation handled by Automation wrapper of
VbScriptXtra and/or OLE objects handled by OLE xtra with evaluation purposes only.

Any objects or methods that require a license will prompt with an "evaluation" message.

By accepting the FREE LICENCE you have certain rights and obligations as follow:

YOU MAY:

1. Install and use the SOFTWARE (as LICENCE permits) on any computer within
your company or home.

2. Make a copy of the SOFTWARE for archival purposes.

3. Distribute an unlimited number of copies of the SOFTWARE with your final
runtimes provided that the original package contents stay unchanged including
this EULA.

YOU MAY NOT:

1. Sublicense, rent or lease your license

2. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

3. Copy the documentation accompanying the SOFTWARE for use in other
software.

II. LIMITED LICENCE

LIMITED LICENSED VERSION

The LIMITED LICENSED VERSION means a Registered Version (using your personal
registration number). The LIMITED LICENSE defines a certain set of ProgIds that are
allowed to be used with the SOFTWARE.

The LIMITED LICENCE allows using any functionality of the SOFTWARE except for
COM Automation objects handled by Automation wrapper of VbScriptXtra and/or OLE
objects handled by OLE xtra not covered by the LIMITED LICENCE.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

The LIMITED LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and OLE objects handled by OLE xtra covered by the LIMITED
LICENCE.

The LIMITED LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and/or OLE objects handled by OLE xtra not covered by the
LIMITED LICENCE with evaluation purposes only.

If you accept the terms and conditions of this AGREEMENT, you have certain rights and
obligations as follow:

YOU MAY:

1. Install and use the Registered SOFTWARE on any single computer.

2. Make a copy of the Registered SOFTWARE for archival purposes only.

3. Distribute an unlimited number of copies of the Xtra with your final runtimes
provided that the source code is protected and your serial number is not accessible
to any 3rd party.

YOU MAY NOT:

1. Copy and distribute the SOFTWARE with an accessible serial number.

2. Sublicense, rent or lease your license

3. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

4. Copy the documentation accompanying the SOFTWARE for use in other
software.

III. UNLIMITED LICENCE

UNLIMITED LICENSED VERSION

The UNLIMITED LICENSED VERSION means a Registered Version (using your
personal special registration number).

The UNLIMITED LICENCE allows using any functionality of the SOFTWARE.

If you accept the terms and conditions of this AGREEMENT, you have certain rights and
obligations as follow:

YOU MAY:

1. Install and use the Registered SOFTWARE on any single computer.

2. Make a copy of the Registered SOFTWARE for archival purposes only.

3. Distribute an unlimited number of copies of the Xtra with your final runtimes
provided that the source code is protected and your serial number is not accessible
to any 3rd party.

YOU MAY NOT:

1. Copy and distribute the SOFTWARE with an accessible serial number.

2. Sublicense, rent or lease your license

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

3. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

4. Copy the documentation accompanying the SOFTWARE for use in other
software.

WARRANTY DISCLAIMER

The SOFTWARE is supplied "AS IS". MediaMacros, Inc. and Eugene Shoustrov disclaim
all warranties, expressed or implied, including, without limitation, the warranties of
merchantability and of fitness for any purpose. The user must assume the entire risk of
using this SOFTWARE.

DISCLAIMER OF DAMAGES

MediaMacros, Inc. and Eugene Shoustrov assume no liability for damages, direct or
consequential, which may result from the use of this SOFTWARE, even if MediaMacros,
Inc. and/or Eugene Shoustrov have been advised of the possibility of such damages.

TERM

This license is effective from the date of obtaining or purchasing the SOFTWARE and
shall remain in force until terminated. You may terminate the license and this agreement at
any time by destroying the SOFTWARE and its documentation, together with all copies in
any form that reside on your computer or media.

COPYRIGHT NOTICE:

The Company and/or our Licensors hold valid copyright in the Software. Nothing in this
Agreement constitutes a waiver of any rights under U.S. Copyright law or any other federal
or state law.

ACKNOWLEDGMENT:

BY USING THIS SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE READ
THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE
COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN
YOU AND THE COMPANY AND SUPERCEDES ALL PROPOSALS OR PRIOR
ENDORSEMENTS, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS
BETWEEN YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE
COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

All trademarked names mentioned in this document and product are used for editorial
purposes only, with no intention of infringing upon the trademarks.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

OLE xtra Programmer's Guide
OLE xtra implements custom cast member type; therefore it can be used in the similar way
as other visual Director cast members.

Inserting new OLE cast member
Once OLE xtra is placed in Director Xtras folder it adds the menu command for creation
new OLE cast members:

Insert\XtraMania :: ActiveCompanionSet :: OLE object...

Use this command to insert new empty OLE xtra cast member. The command invokes the
OLE xtra media editor described below.

Media editor
Note: OLE xtra's Media Editor is provided as a separate 'OLE xtra UI.dll' file. Make
sure you have placed it into the Xtras folder of your Director installation (near with the
OLE xtra.x32 file).

Note: You do not need to pack 'OLE xtra UI.dll' file with Projector since it is not
used by the xtra while it is running within Projector. It is used only while authoring with
Director.

To change existing OLE object cast member double click it or its sprite to invoke media
editor dialog.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Additional data stored with cast member

OLE xtra provides three drawing modes for OLE objects. At first, there is a native OLE
mode when drawing is performed by native OLE handler provided with native application
for the OLE object. Drawing with OLE can only work if native application is installed on
the user's system (or at least its OLE handler is registered). This mode is controlled by
'Draw with native application's OLE handler' switch button. If this switch button is
checked, then native OLE handler is used if it is available. If this switch button is not
checked or OLE handler is not available, then OLE xtra uses static object's image stored
together with OLE object data within cast member.

There are two types of this static images stored with asset. It could be either metafile or
raster bitmap data (DIB). You can control the type of image stored with asset data by
selecting one of 'Additional data stored with cast member' radio buttons.

DIB image is good since you always get the image you saved once. Actually it is the only
advantage.

Metafile image is generated by native OLE handler. It is not controlled by OLE xtra.
OLE xtra simply saves whatever OLE handler decides to draw, it could be raster data
within metafile, it could be some text that relies on fonts installed, it can also be vector
curves that do not rely on fonts. That all depend on the particular OLE application.

So it is up to you to choose the type of image stored with the asset.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Scripting operations
OLE xtra fully supports scripting of OLE related operations.

The type of OLE xtra cast member is #OLEobject. You can use it to create new cast
members by Lingo.

OLE xtra allows inserting OLE object with standard system 'Insert OLE' dialog or
programmatically from file or by specifying OLE object ProgId.

OLE xtra provides programming editing support that allows to open stored OLE object
with native application. OLE objects that support COM Automation can be fully controlled
in active state by means of VbScriptXtra. OLE xtra can return VbScriptXtra's Automation
wrapper for such objects for further scripting. See the sample with opening and editing
Microsoft Word document on the fly.

OLE xtra provides information about what is happening with the activated object, whether
user has changed anything and/or close OLE application. More advanced approach is
available via VbScriptXtra's events handling support.

OLE xtra provides scripting control to how OLE object is appeared on stage, either with
certain type of static image or drawn by the native OLE handler.

Also see debugging and error handling recommendations for scripting with OLE xtra.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Creating new OLE cast member
The type of the cast member implemented by OLE xtra is #OLEobject. So use the
statement below to create a new empty OLE cast member:
assetOLE = new(#OLEobject)

or
assetOLE = new(#OLEobject, member(1))

So, assetOLE is a reference to the newly created OLE xtra's cast member.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Inserting OLE Object
Use assetOLE.InsertOLE() method to create an actual OLE object to be stored by the
asset. There are several ways to create a new OLE object.

By User Choice
To invoke standard system dialog for inserting
OLE objects use the statement below:
bSucceeded = assetOLE.InsertOLE()

This command will bring the system dialog
where user can either choose the type of the
new empty OLE object to create or specify a
file that should be inserted as OLE object.

If the bSucceeded value is true after the calling this method, then OLE object has been
created successfully. If it is false, check the last error information to find out whether it
was an OLE specific error or user simply pressed Cancel button in the dialog.

bSucceeded = assetOLE.InsertOLE()
if not bSucceeded then
 if assetOLE.Failed then
 -- An error has occured
 alert assetOLE.LastError
 else
 -- User pressed Cancel
 end if
end if

From File
To create a new OLE object from file, use the statement below:
bSucceeded = assetOLE.InsertOLE("d:\Temp\SomeFile.doc")

OLE will automatically find out the native application for the specified file. Check the
completion status of the method. For example, it may fail if OLE cannot find the file
specified.

Also, it is possible then on different systems OLE will use different native applications for
the specified file type. For example if Microsoft Word is not installed, OLE may use
packager to simply save the file contents inside the OLE object. You may check which
object has been created by this method by checking the ProgId property of the asset:

bSucceeded = assetOLE.InsertOLE("d:\Temp\SomeFile.doc")
if bSucceeded then
 put assetOLE.ProgId
end if

New Empty Object of Specified Type
To create a new OLE object of the specified type, use the statement below:
bSucceeded = assetOLE.InsertOLE("Word.Document")

The new empty OLE object will be created by the xtra.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Editing OLE object
Once you have an OLE object you can open it with the native application. Use
asset.Open() method to simply open the OLE object with native application.

Note: asset.Open() method requires VbScriptXtra to be available, since it uses some of
its functionality.

-- Create new OLE cast member
assetOLE = new(#OLEobject)

-- Create new OLE object of type Equation
assetOLE.InsertOLE("Equation")

-- Open the OLE object with Equation editor
assetOLE.Open()

Equation editor will be executed and will show the embedded OLE object. You can check
what is happening with the OLE object by checking its OLEstate and
OLEMediaChanged properties.

OLEstate property allows you to check whether object is still active or user has closed it
already.

OLEMediaChanged property allows you to check whether user has changed the OLE
object data with either Update menu command or by quitting the application (Equation
Editor).

Note: OLE xtra keeps the original copy of the OLE object's data with the asset (cast
member). When OLE object is activated and updated by the user, asset data stays
unchanged unless you explicitly call asset.Save() method. OLEMediaChanged
property allows you to know whether OLE object data was changed by a user or not and
therefore whether it needs to be saved with cast member or not.

For example see the code below:
global assetOLE -- Reference to OLE cast member

on exitFrame me

 if assetOLE.OLEMediaChanged then
 assetOLE.Save()
 end if

 if assetOLE.OLEstate <> #Running then
 -- OLE object is closed so we can continue with something else
 end if
end

You can close opened object in any time with asset.Close() method. Closing OLE
object means that object passes from #Running state to #Loaded state. Close method has
a bSave parameter (it is true by default). It allows you to automatically save changes
before closing.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Editing OLE object with VbScriptXtra
Some OLE objects may support COM Automation. It allows control them with
VbScriptXtra. Once object is opened with native application OLE xtra may get its scripting
interface and return it via VbScriptXtra Automation wrapper. Use asset.GetObject()
method to get the Automation wrapper for the activated OLE object.

Note: asset.GetObject() method requires VbScriptXtra to be available, since it uses
some of its functionality.

-- Create new OLE cast member
assetOLE = new(#OLEobject)

-- Create new OLE object of type Word document
assetOLE.InsertOLE("Word.Document")

-- Opens embedded OLE object with Word
assetOLE.Open()

-- Gets the scripting interface to the object
doc = assetOLE.GetObject()

if assetOLE.Failed then
 put assetOLE.LastError
 exit
end if

-- Typing simple message at the beginning of the document
doc.range().InsertAfter("Editing by Lingo...")

-- Setting the font style of all text in document
doc.content.bold = #true

-- Now we save changes and close the object
doc = void
assetOLE.Close()

In this sample doc is usual VBScriptXtra wrapper. Refer to the VbScriptXtra's
documentation for more details. More sophisticated applications can use event handling for
controlling operations that user performs with the activated OLE document. Also it is
possible to control the location of the application window that is used for editing OLE
document and so on.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

OLE object running on stage
Some OLE object support in-place activation. It allows to integrate running OLE object
into Director's stage. For example, it is possible to place Microsoft PowerPoint movie as
Director sprite, make it running and fully control it with scripting support provided by
VbScriptXtra.

Simply let OLE xtra handle PowerPoint
presentation OLE object. Presentation
should be configured to allow playing
in Window without displaying scroll
bars (otherwise they will appear to the
right of the sprite). Presentation may be
adjusted for auto advancing by time,
effects, transitions etc. If presentation is
marked as read only, PowerPoint won't
let user changing it, since within
Director sprite is actually running the
PowerPoint with all its capabilities.

Below is the simple behavior attached to the OLE xtra's actor sprite, that activates the
embedded OLE object on begin sprite:

property spriteNum
property pView

on beginSprite me
 sprite(spriteNum).Activate()

 mem = sprite(spriteNum).member

 if mem.Failed then
 alert mem.LastError
 exit
 end if

 -- Get the scripting interface to the Presentation
 p = mem.GetObject()

 if mem.Failed then
 put mem.LastError
 exit
 end if

 -- Getting the running slide show view
 pView = p.SlideShowWindow.View
end

The method below shows how to browse presentation slides by Lingo:
on GoToSlide me, index
 -- Moving to the requested slide
 pView.GoToSlide(index)
end

on GoNext me -- Moving to the requested slide
 pView.Next()
end

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Controlling OLE object appearance
OLE xtra provides three drawing modes for OLE objects. At first, there is a native OLE
mode when drawing is performed by native OLE handler provided with native application
for the OLE object. Drawing with OLE can only work if native application is installed on
the user's system (or at least its OLE handler is registered). This mode is controlled by
asset.DrawWithOLE property. If this property is set to true, then native OLE handler is
used if it is available. If this property is set to false or OLE handler is not available, then
OLE xtra uses static object's image stored together with OLE object data within cast
member.

There are two types of this static images stored with asset. It could be either metafile or
raster bitmap data (DIB). You can control the type of image stored with asset data by
specifying symImageType argument of the asset.Save() method.

DIB image is good since you always get the image you saved once. Actually it is the only
advantage.

Metafile image is generated by native OLE handler. It is not controlled by OLE xtra.
OLE xtra simply saves whatever OLE handler decides to draw, it could be raster data
within metafile, it could be some text that relies on fonts installed, it can also be vector
curves that do not rely on fonts. That all depend on the particular OLE application.

So it is up to you to choose the type of image stored with the asset.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Debugging and Errors Handling
There are two main levels of errors related to OLE xtra. They have completely different
nature and therefore have to be handled differently.

Lingo Errors
Lingo errors are similar to incorrect Lingo syntax run-time errors. They cause Director to
show error alert saying something like "Method or property not found in object" or "One
parameter expected". In Projector they might halt script execution etc. These errors usually
mean that something is wrong with the programming. Wrong method call syntax is used or
something similar to it. OLE xtra might return error codes to Director that make Director to
show Lingo error alert box. It happens when OLE xtra discovers the programming error at
the Lingo level (wrong syntax, wrong parameters and other compile time evident
programming errors).

Programming Errors
This level includes errors that are actually exception conditions. They happen or do not
happen depending on particular execution context. They are normal in programming
practice and have to be handled programmatically. For example if file operation fails it
does not have to worry end-user with Lingo error alert box. Instead developer should check
whether operation completed successfully and perform whatever is appropriate.

OLE xtra provides programming errors handling support based on storing status of the last
call within every OLE asset object. In other words, every OLE xtra's asset object keeps the
error code and description returned by the most recently called method or property. Before
returning from the call to any asset object the last error information (if any) is being set by
the asset object. Right before calling the next method or property of the asset object the last
error information is cleared.

To check the status of the most recent call to the object, use asset.Failed or
asset.Succeeded properties. The error message and error code are available via
asset.LastError and asset.LastErrorCode properties.

Simple Debugging Mode
Since errors are happening OLE xtra provides debugging modes to simplify debugging
process.

In simple debugging mode any asset puts error information into Messages window
whenever error occurred. Usually simple debugging mode is useful to detect whether script
is executed well or there is a problem somewhere. Error messages usually come from
assets but there is no information about the context where error occurred.

To set the simple debugging mode for the particular asset use:
member("OLEmember").debugMode = 1

Advanced Debugging Mode
Advanced debugging mode allows you to catch error right in Debugger whenever error
occurred. In this mode OLE xtra tries to call movie-level handler (it is shared with
VbScriptXtra) VbScriptXtra_DebugEvent(strMes, nCode). If there is no
such handler, the xtra behaves as in simple debugging mode. This handler may contain any

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Lingo statements. Furthermore, you can place a break point inside this handler and use
Director's debugging capabilities to view the calling context, variables etc.

Sample movie-level handler for advanced debugging.
on VbScriptXtra_DebugEvent strMes, nCode
 put strMes -- Place the break point here
end

Debugging mode is kept separately for every OLE xtra asset. Use DebugMode property to
change the debugging mode of the particular asset directly. To set the advanced debugging
mode for the particular asset use:
member("OLEmember").debugMode = 1

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

OLE xtra Programmer's Reference
OLE xtra implements its own type of Director cast member (asset). OLE xtra asset object
(or cast member) can store the OLE object data and its static image in raster or vector
form.

OLE xtra implements actor object that can be placed on the stage as Director sprite.
OLE xtra actor can show embedded OLE object. It can be drawn either with OLE native
handler for the contained object or it can simply display stored static image of the object.
OLE xtra v1.1 can also display in-place active OLE object as a Director always on top
sprite.

Most of the scripting support is implemented on the asset level. OLE xtra actor provides
only a few methods providing in-place activation.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Asset-level
OLE xtra asset provides a scripting control to its contents. It allows inserting new OLE
objects on the fly, opening them with the native application and then saving it back to the
cast member controlling the type of the static image saved with the asset.

New OLE objects can be created either from existing files or empty objects or with system
'Insert OLE object' dialog.

OLE object state can be checked with the asset.OLEstate property.

OLE xtra provides even further scripting control to the contained object by means of
VbScriptXtra. If the contained OLE object supports COM Automation it can be activated
and controlled with VbScriptXtra. See asset.GetObject() method.

OLE xtra provides common scripting support similar to VbScriptXtra. It includes error
handling and debugging support.

Error handling support

Succeeded

Returns true if the most recent call to the asset was successful.

Syntax
bResult = asset.Succeeded

Return values

True

If the previous call to the asset was successful

False

If the previous call to the asset was not successful. The error code and description are
available via #LastErrorCode and LastError properties.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset object.

Failed

Returns true if the most recent call to the asset has failed.

Syntax
bResult = asset.Failed

Return values

True

If the previous call to the asset was not successful. The error code and description are
available via LastErrorCode and LastError properties.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

False

If the previous call to the wrapper's contents was successful

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

LastErrorCode

Returns the code of the last error (if any) happened while calling the asset.

Syntax
nCode = asset.LastErrorCode

Return values

Integer

Integer value that indicates the error code of the most recent call to the asset. If the
most recent call completed successfully, the error code is 0.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

Most of error codes are coming from the native application for the contained OLE object.

Other error codes are defined by OLE itself. Here come errors produced by passing
incorrect parameters or skipping required parameter etc.

Several error codes are defined by OLE xtra. They could occur if OLE xtra failed to
allocate memory for something or similar.

LastError

Returns the description of the last error (if any) happened while calling the asset.

Syntax
strErrorMessage = asset.LastError

Return values

String

String value that contains the error description of the most recent call to the asset. If the
most recent call completed successfully, the error description is empty.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Debugging Support
Every OLE xtra asset can detect errors produced while executing OLE operations. Internal
OLE xtra errors (memory problems etc) could happen too. Normally these errors could be
trapped programmatically by checking asset's last error status after any meaningful call to
the asset. See error handling support properties for more details. To simplify debugging
process OLE xtra provides debugging mode.

Simple Debugging Mode

In simple debugging mode any asset object puts error information into Messages window
whenever error occurred. Usually simple debugging mode is useful to detect whether script
is executed well or there is a problem somewhere. Error messages usually come from
wrapped objects but there is no information about the context where error occurred.

Advanced Debugging Mode

Advanced debugging mode allows you to catch error right in Debugger whenever error
occurred. In this mode OLE xtra tries to call movie-level handler (it shares the handler with
VbScriptXtra) VbScriptXtra_DebugEvent(strMes, nCode). If there is no
such handler, the xtra behaves as in simple debugging mode. This handler may contain any
Lingo statements. Furthermore, you can place a break point inside this handler and use
Director's debugging capabilities to view the calling context, variables etc.

Sample movie-level handler for advanced debugging.
on VbScriptXtra_DebugEvent strMes, nCode
 put strMes -- Place the break point here
end

Debugging mode is kept separately for every OLE xtra asset object. Debugging mode is
not saved with the asset, so use DebugMode property to change the debugging mode of the
particular asset directly.

DebugMode

Sets or gets the debugging mode for the specific asset.

Syntax
nDebugMode = asset.DebugMode

asset.DebugMode = nDebugMode

Parameters

nDebugMode - Integer

Debugging mode for newly created objects. This parameter can be one of the following
values.

Value Meaning
0 No debugging support. Release behavior.
1 Simple debugging. Any error is automatically printed in Messages

window.
2 Advanced debugging. When any error is occurred, the xtra calls movie

level handler VbScriptXtra_DebugEvent(strMes, nCode).

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Return values

Integer

Integer value that indicates the current debugging mode applied to the wrapper.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

VbScriptXtra wrapper objects produced by OLE xtra assets get the debugging mode from
the asset.

Xtra Specific Properties

Version

This property returns the OLE xtra’s version.

Syntax
strVersion = asset.Version

strVersion = asset.Version()

Return values

String

Version string in a form of 5 point delimited items: "OLE xtra.1.0.0.4".

The first item is the xtra's name "OLE xtra".

The second item is the major xtra's version.

The third item is the subversion number. It indicates noticeable changes.

The forth item is the minor version number. It indicates minor changes.

The last item is the absolute build number. It is auto incremented with every release
build of the xtra.

CLSID

Returns the class Id of the embedded OLE object (if any).

Syntax
strClsId = asset.CLSID

Return values

String

String value that indicates the CLSID of the embedded object in the registry format.

ProgId

Returns the ProgId of the embedded OLE object (if any).

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Syntax
strProgId = asset.ProgId

Return values

String

String value that indicates the ProgId of the embedded object.

Remarks

This property relies on the registry to determine the ProgId assigned to the OLE object's
CLSID. If parent application of OLE object is not installed the property might return
empty string even for valid OLE object.

OLEState

Returns the state of the embedded OLE object (if any).

Syntax
symObjectState = asset.OLEState

Return values

Symbol

Symbol value that indicates the state of the embedded OLE object. It can be one of the
following values:

Value Meaning
#Unloaded OLE object is not loaded.
#Loaded OLE object is loaded and controlled by native OLE handler.
#Running OLE object is opened with the native parent application.
#RunningInPlace OLE object is activated right on Stage.

Remarks

If the native OLE object's application is not installed, the object will always stay at
#Unloaded state. The xtra will draw such object with stored image of the object.

If object is loaded or running, the xtra may draw object either with native OLE handler or
with stored object's image depending on asset.DrawWithOLE property.

If object is running in-place then it is drawn with native application right on stage above all
other sprites.

StoredImageType

Returns the type of object's image stored with asset's media.

Syntax
symImageType = asset.StoredImageType

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Return values

Symbol

Symbol value specifying the type of image that is stored with asset's media. It can be
one of the following values.

Value Meaning
#None No image is stored with member.
#Metafile OLE object’s image is recorded as enhanced metafile.
#DIB OLE object’s image is recorded as raster bitmap image.

Remarks

Metafile image may contain either vector scalable image data or raster bitmap image data.
It depends on certain OLE object how it is drawn. OLE xtra allows choosing how to store
object's image either as DIB or as Metafile.

DrawWithOLE

Controls the way the asset draws embedded OLE object either with native OLE handler or
with object's image stored with asset's media.

Syntax
bDrawWithOLE = asset.DrawWithOLE

asset.DrawWithOLE = bDrawWithOLE

Sets or gets

Boolean

Boolean value that indicates whether native OLE handler should be used for drawing
object.

Remarks

Note: Metafile view of the OLE object might slightly differ from image drawn by native
OLE handler.

Note: Changing the drawing mode may affect how actors are displayed. Especially if
stored object is opened with native application and saved within the native application. In
this case native OLE handler will display the current object's data, while stored image does
not reflect these changes unless asset.Save(symImageType) is called.

OLEMediaChanged

Returns whether the running OLE object was changed and user has accepted changes with
either 'Update' menu command or by quitting parent application.

Syntax
bMediaChanged = asset.OLEMediaChanged

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Returns

Boolean

Boolean value that indicates that current embedded OLE object's data differs from the
data saved with asset's media.

Remarks

To save changes in the OLE object with asset's media use asset.Save(
symImageType) or asset.Close() methods.

Verbs

Returns a list of verbs supported by the OLE object.

Syntax
lstVerbs = asset.Verbs

Returns

Linear list

with supported verbs names.

Remarks

If object is not loaded the returned list is empty. This property does not force loading OLE
object. The returned list may vary depending on the object state. The first verb returned is
usually a default verb for the object.

To invoke a verb use actor.Activate() or asset.DoVerb() methods.

Xtra Specific Methods

Open()

Method opens the embedded OLE object in its native parent application. Changes of the
object made with the parent application could be either ignored or saved back to the cast
member with asset.Save(symImageType) method.

Syntax
asset.Open()

Return values

VOID

Does not return anything.

Remarks

This method as an opposite to in-place activation. It opens embedded object in external
window of the native object's application.

If DrawWithOLE property of the asset is set and OLE object is changed by parent
application, then asset’s sprite might reflect these changes immediately. Data stored with

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

asset can only be changed either with asset.Save(symImageType) method or with
Xtra’s media editor.

Note: This method relies on some functionality of VbScriptXtra. Therefore it fails if
VbScriptXtra is not available.

Method sets the last error information.

GetObject()

Method tries to get IDispatch pointer (scripting interface) from the running object to allow
controlling it with COM Automation scripting. If successful, the instance of Automation
wrapper of VbScriptXtra is created to hold the Automation object. This instance is returned
by the method.

If OLE object’s parent application does not support COM Automation the method returns
VOID.

Syntax
objAuto = asset.GetObject()

Return values

Object

If object is created successfully the method returns the new instance of VbScriptXtra
wrapper object that holds scripting interface of the running OLE object.

VOID

If the OLE object does not support COM Automation, VOID is returned.

Remarks

Note: Scripting interface can only be received for running or running in-place OLE
objects. Call either asset.Open() or actor.Activate() method to bring the object
into the running state.

Take care with returned object since it keeps the reference to the OLE object keeping it in
memory. Make sure to set the variable to VOID to allow OLE object to release its memory.

Note: This method relies on some functionality of VbScriptXtra. Therefore it fails if
VbScriptXtra is not available.

Method sets the last error information.

Save(symImageType)

Saves the OLE object data and its image of the requested type into the asset.

Syntax
asset.Save()

asset.Save(Optional Symbol symImageType)

Parameters

symImageType

Symbol value specifying the type of image to be stored with asset.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

If image type is not specified then the current asset's image type is used. Otherwise it
can be one of the following values.

Value Meaning
#None No image is stored with member.
#Metafile OLE object’s image is recorded as enhanced metafile.
#DIB OLE object’s image is recorded as raster bitmap image.

Return values

VOID

Does not return anything.

Remarks

This method is the only Lingo way to update OLE xtra asset’s media data.

Note: If DrawWithOLE property of the asset is set and OLE object is changed by parent
application, then asset’s sprite might reflect these changes immediately. Data stored with
asset can only be changed either with this method or with Xtra’s media editor.

Note: Metafile image may contain either vector scalable image data or raster bitmap image
data. It depends on certain OLE object how it is drawn. OLE xtra allows choosing how to
store object's image either as DIB or as Metafile.

Method sets the last error information.

Close(bSave)

Saves and closes running OLE object. Closing means that object goes from Running state
into Loaded state. If OLE object was activated in-place it deactivates it and resaves if
requested (bSave is true).

Syntax
asset.Close()

asset.Close(Optional Boolean bSave)

Parameters

bSave

Boolean value that indicates whether object has to be saved. By default it is set to true.
If bSave is set to false object is closed and changes made to the object are discarded.

Return values

VOID

Does not return anything.

Remarks

This method closes the running OLE object (if it is running). Then internally calls Save
method using the current asset's type of object's image.

Method sets the last error information.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

LoadOLEObject()

Method tries to load an instance of embedded OLE object. This operation succeeds only if
OLE handler is available for this particular kind of objects. Normally OLE handler is
installed with the parent object's application.

Syntax
bSucceeded = asset.LoadOLEObject()

Return values

Integer

Integer value that indicates whether operation has succeeded.

Remarks

If DrawWithOLE property of the asset is set, it will automatically try to load OLE object
when any of its sprites are needed to draw itself. Most of scripting methods try to load
OLE object too.

There are rare cases when this method might be used.

Method sets the last error information.

UnloadOLEObject()

Method unloads the instance of embedded OLE object.

Syntax
asset.UnloadOLEObject()

Return values

VOID

Does not return anything.

Remarks

This method allows simulating xtra's behavior in case when OLE handler is not available
for the embedded object. In this case asset will use stored image data to draw object.

Method sets the last error information.

DeActivate()

Method deactivates the embedded OLE object running in-place. Object comes from
RunningInPlace state to Loaded.

Syntax
asset.DeActivate()

Return values

VOID

Does not return anything.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Remarks

This method is used to bring the embedded OLE object from running in-place state to
simply loaded state.

Method sets the last error information.

The same method exists at the actor level.

InsertOLE()

Initializes the asset with new OLE object. New OLE object could be either specified by its
ProgId or source file, or it could be selected by user with system 'Insert OLE object' dialog
box.

Syntax
bSucceeded = asset.InsertOLE(Optional String strSource)

Parameters
strSource

String value that indicates the object to be inserted. If strSource is not specified, the
system 'Insert OLE object' window will be invoked. It allows user to choose either
which OLE object to insert or from which file to create OLE object.

If strSource is specified it could be one of the following values:

Value Meaning
"{CLSID}" New OLE object by the specified CLSID in registry format.
"ProgId" New OLE object by its ProgId (i.e. "Word.Document")
"path-to-a-file" New OLE object from the specified file.

Return values

Integer

Integer value that indicates whether operation has succeeded. If user has cancelled the
Insert OLE dialog, then the method returns 0 and sets the Succeeded status to true.

Remarks

This method discards the current media of the asset only if the new OLE object is
successfully created.

DoVerb(nVerb, rcFrame)

Invokes the requested OLE object's verb with the specified rect.

Syntax
asset.DoVerb(strVerb, Optional Rect rcFrame)

Parameters
strVerb

Integer or string or symbol value identifying the verb to be applied to the OLE object.

It could be one of the following predefined values:

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Symbol Integer Meaning
#Primary 0 Default action. It is up to the object whether it tries to

activate in-place or not.
#Show -1 Instructs an object to show itself for editing or viewing.
#Open -2 Instructs an object, including one that supports in-place

activation, to open itself for editing in a window
separate from that of its container. If the object does not
support in-place activation, this verb has the same
semantics as OLEIVERB_SHOW.

#Hide -3 Causes an object to remove its user interface from the
view. Applies only to objects that are activated in-place.

 Other Ordinal number of the object defined verbs as in list
returned by the asset.Verbs property.

If strVerb is a string then OLE xtra tries to find appropriate list among verbs
supported by the object. Use the asset.Verbs property to get a list of verbs provided
by the object.

rcFrame

Rectangle used as a verb parameter. If the verb assumes that object should be activated
in-place, then rcFrame identifies the rectangle in stage coordinates where object
should be located. Otherwise it may define window size for OLE object opened with
native application.

Return values

VOID

It does not return anything.

Remarks

This method invokes the specified verb for the OLE object.

Using this method with verbs that do in-place activation is not recommended. Use
actor.Activate instead.

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Actor-level
OLE xtra actors represent Director sprites. There are only few scripting methods provided
by OLE xtra actors for handling in-place activation of the embedded OLE object.

Use actor.Activate() method to make the embedded object running in-place (if in-
place activation is supported by the embedded object). While the embedded object is active
in-place, its sprite could be moved or resized. Changes of the sprite's rectangle are reflected
to the running in-place object. When sprite span is ended, OLE xtra deactivates the object
automatically.

Use actor.DeActivate() method to deactivate object while sprite span is still exists.

If several sprite at the current frame shares single OLE asset member, then only one sprite
instance can become in-place active. You need several OLE assets to have several active
in-place objects running simultaneously.

OLE xtra actors (or sprite instances) do not provide its own error handling and debugging
support. Instead they rely on these features of their asset objects since in any case
everything is coming through OLE xtra assets. See error handling and debugging support
at asset level.

Xtra Specific Methods

Activate()

Method activates the embedded OLE object right on stage at the current sprite location. If
the object supports in-place activation, then this method brings the embedded OLE object
into RunningInPlace state. Activated object is drawn by the native application right on
stage above all other sprites. Some verbs may cause object to activate out of place in its
own window.

Changes of the object made with the parent application could be either ignored or saved
back to the cast member with asset.Save(symImageType) method.

Syntax
actor.Activate(Optional strVerb)

actor.DoVerb(Optional strVerb)

Parameters
strVerb

Integer or string or symbol value identifying the verb to be applied to the OLE object.
If strVerb is not specified then #Primary is used.

It could be one of the following predefined values:

Symbol Integer Meaning
#Primary 0 Default action. It is up to the object whether it tries to

activate in-place or not.
#Show -1 Instructs an object to show itself for editing or viewing.
#Open -2 Instructs an object, including one that supports in-place

activation, to open itself for editing in a window

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Symbol Integer Meaning
separate from that of its container. If the object does not
support in-place activation, this verb has the same
semantics as OLEIVERB_SHOW.

#Hide -3 Causes an object to remove its user interface from the
view. Applies only to objects that are activated in-place.

 Other Ordinal number of the object defined verbs as in list
returned by the asset.Verbs property.

If strVerb is a string then OLE xtra tries to find appropriate list among verbs
supported by the object. Use the asset.Verbs property to get a list of verbs provided
by the object.

Return values

VOID

Does not return anything.

Remarks

This method as an opposite to out-of-place activation. It opens embedded object right on
stage with the native object's application.

Method sets the last error information of its parent asset (or member).

Use asset.GetObject() method to obtain scripting interface to the object activated in-
place.

While the embedded object is active in-place, its sprite could be moved or resized.
Changes of the sprite's rectangle are reflected to the running in-place object. When sprite
span is ended, OLE xtra deactivates the object automatically.

This method has the same effect as asset.DoVerb() method where sprite rectangle is
used as rcFrame parameter.

Sample

This sample behavior allows automatic activation of embedded OLE objects. Attach it to
the OLE xtra actor's sprite.

property spriteNum

on beginSprite me
 sprite(spriteNum).Activate()

 if sprite(spriteNum).member.Failed then
 alert sprite(spriteNum).member.LastError
 end if
end

DeActivate()

Method deactivates the embedded OLE object running in-place. Object comes from
RunningInPlace state to Loaded.

Syntax
actor.DeActivate()

 OLE xtra version 1.2

 © Eugene Shoustrov, 2005

Return values

VOID

Does not return anything.

Remarks

This method is used to bring the embedded OLE object from running in-place state to
simply loaded state.

Method sets the last error information of its parent asset.

The same method exists at the asset level.

	OLE xtra
	About OLE xtra
	About ActiveCompanionSet
	What is the Difference
	'ActiveCompanionSet' Xtras License Agreement

	OLE xtra Programmer's Guide
	Inserting new OLE cast member
	Media editor
	Scripting operations
	Creating new OLE cast member
	Inserting OLE Object
	By User Choice
	From File
	New Empty Object of Specified Type

	Editing OLE object
	Editing OLE object with VbScriptXtra
	OLE object running on stage
	Controlling OLE object appearance
	Debugging and Errors Handling
	Lingo Errors
	Programming Errors
	Simple Debugging Mode
	Advanced Debugging Mode

	OLE xtra Programmer's Reference
	Asset-level
	Error handling support
	Succeeded
	Failed
	LastErrorCode
	LastError

	Debugging Support
	DebugMode

	Xtra Specific Properties
	Version
	CLSID
	ProgId
	OLEState
	StoredImageType
	DrawWithOLE
	OLEMediaChanged
	Verbs

	Xtra Specific Methods
	Open()
	GetObject()
	Save(symImageType)
	Close(bSave)
	LoadOLEObject()
	UnloadOLEObject()
	DeActivate()
	InsertOLE()
	DoVerb(nVerb, rcFrame)

	Actor-level
	Xtra Specific Methods
	Activate()
	DeActivate()

