

 © Eugene Shoustrov, 2005

ActiveX xtra
Version 1.0

 www.xtramania.com

http://www.xtramania.com/

 © Eugene Shoustrov, 2005

All trademarked names mentioned in this document and product are used for editorial
purposes only, with no intention of infringing upon the trademarks.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

ActiveX xtra ... 1

About ActiveX xtra.. 1

About ActiveCompanionSet ... 1

What is the Difference ... 1

'ActiveCompanionSet' Xtras License Agreement .. 2

ActiveX xtra Programmer's Guide.. 5

Inserting new ActiveX cast member .. 5

Media editor ... 5

Scripting operations... 7

Creating new ActiveX cast member ..8
Scripting ActiveX control with VbScriptXtra ..9
Debugging and Errors Handling..10

Lingo Errors...10
Programming Errors ..10
Simple Debugging Mode...10
Advanced Debugging Mode..10

ActiveX xtra Programmer's Reference... 12

Common properties for assets and actors ...13
Error handling support...13

Succeeded ..13
Failed...13
LastErrorCode...13
LastError ...14

Debugging Support..14
DebugMode ...15

Asset-level...16
Xtra Specific Properties...16

Version...16
CLSID ..16
ProgId..16

Xtra Specific Methods...17
InsertActiveX()...17

Actor-level ..18
Xtra Specific Methods...18

GetObject() ..18

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

ActiveX xtra
About ActiveX xtra

ActiveX xtra extends the Macromedia Director's Lingo functionality with capability to
handle ActiveX visual controls.

ActiveX xtra is available for Macromedia Director (v7 and later) under Windows
95/98/ME/NT/2000/XP.

ActiveX xtra is not available for Shockwave.

Note: All trademarked names mentioned in this document and product are used for
editorial purposes only, with no intention of infringing upon the trademarks.

About ActiveCompanionSet
ActiveX xtra is shipped within ActiveCompanionSet. It is a bundle of xtras that provide
COM, OLE and ActiveX support for Macromedia Director. The set currently includes
VbScriptXtra, OLE xtra, ActiveX xtra and ObjectBrowserXtra.

What is the Difference
Macromedia Director ships with its own ActiveX xtra. ActiveCompanionSet provides even
better support for ActiveX visual controls due to advanced scripting support by means of
VbScriptXtra. Below is the list of key features provided by ActiveCompanionSet for visual
ActiveX controls.

• Advanced scripting support. Supports almost all methods and properties including
those that uses data types other then simply strings and numbers.

• Events handling allows using either behavior or parent script instance for handling
events fired by visual ActiveX control.

• Events, methods and properties of ActiveX control can be viewed with
ObjectBrowser xtra.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

'ActiveCompanionSet' Xtras License Agreement
This user license agreement (the AGREEMENT) is an agreement between you (individual
or single entity) and MediaMacros, Inc. and Eugene Shoustrov for the included
'ActiveCompanionSet' XTRAS (the SOFTWARE) that are accompanying this
AGREEMENT.

The SOFTWARE is the property of Eugene Shoustrov and is protected by copyright laws
and international copyright treaties. The SOFTWARE is not sold, it is licensed.

If you accept the terms and conditions of this AGREEMENT, then you are granted the
FREE LICENCE.

I. FREE LICENCE

The FREE LICENCE allows using any functionality of the SOFTWARE except for COM
Automation objects handled by Automation wrapper of VbScriptXtra and/or OLE objects
handled by OLE xtra.

The FREE LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and/or OLE objects handled by OLE xtra with evaluation
purposes only.

Any objects or methods that require a license will prompt with an "evaluation" message.

By accepting the FREE LICENCE you have certain rights and obligations as follow:

YOU MAY:

1. Install and use the SOFTWARE (as LICENCE permits) on any computer within
your company or home.

2. Make a copy of the SOFTWARE for archival purposes.

3. Distribute an unlimited number of copies of the SOFTWARE with your final
runtimes provided that the original package contents stay unchanged including
this EULA.

YOU MAY NOT:

1. Sublicense, rent or lease your license

2. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

3. Copy the documentation accompanying the SOFTWARE for use in other
software.

II. LIMITED LICENCE

LIMITED LICENSED VERSION

The LIMITED LICENSED VERSION means a Registered Version (using your personal
registration number). The LIMITED LICENSE defines a certain set of ProgIds that are
allowed to be used with the SOFTWARE.

The LIMITED LICENCE allows using any functionality of the SOFTWARE except for
COM Automation objects handled by Automation wrapper of VbScriptXtra and/or OLE
objects handled by OLE xtra not covered by the LIMITED LICENCE.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

The LIMITED LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and OLE objects handled by OLE xtra covered by the LIMITED
LICENCE.

The LIMITED LICENCE allows using COM Automation objects handled by Automation
wrapper of VbScriptXtra and/or OLE objects handled by OLE xtra not covered by the
LIMITED LICENCE with evaluation purposes only.

If you accept the terms and conditions of this AGREEMENT, you have certain rights and
obligations as follow:

YOU MAY:

1. Install and use the Registered SOFTWARE on any single computer.

2. Make a copy of the Registered SOFTWARE for archival purposes only.

3. Distribute an unlimited number of copies of the Xtra with your final runtimes
provided that the source code is protected and your serial number is not accessible
to any 3rd party.

YOU MAY NOT:

1. Copy and distribute the SOFTWARE with an accessible serial number.

2. Sublicense, rent or lease your license

3. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

4. Copy the documentation accompanying the SOFTWARE for use in other
software.

III. UNLIMITED LICENCE

UNLIMITED LICENSED VERSION

The UNLIMITED LICENSED VERSION means a Registered Version (using your
personal special registration number).

The UNLIMITED LICENCE allows using any functionality of the SOFTWARE.

If you accept the terms and conditions of this AGREEMENT, you have certain rights and
obligations as follow:

YOU MAY:

1. Install and use the Registered SOFTWARE on any single computer.

2. Make a copy of the Registered SOFTWARE for archival purposes only.

3. Distribute an unlimited number of copies of the Xtra with your final runtimes
provided that the source code is protected and your serial number is not accessible
to any 3rd party.

YOU MAY NOT:

1. Copy and distribute the SOFTWARE with an accessible serial number.

2. Sublicense, rent or lease your license

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

3. Decompile, disassemble, reverse engineer or modify the SOFTWARE or any
portion of it, or make any attempt to bypass, unlock, or disable any protective or
initialization system on the SOFTWARE.

4. Copy the documentation accompanying the SOFTWARE for use in other
software.

WARRANTY DISCLAIMER

The SOFTWARE is supplied "AS IS". MediaMacros, Inc. and Eugene Shoustrov disclaim
all warranties, expressed or implied, including, without limitation, the warranties of
merchantability and of fitness for any purpose. The user must assume the entire risk of
using this SOFTWARE.

DISCLAIMER OF DAMAGES

MediaMacros, Inc. and Eugene Shoustrov assume no liability for damages, direct or
consequential, which may result from the use of this SOFTWARE, even if MediaMacros,
Inc. and/or Eugene Shoustrov have been advised of the possibility of such damages.

TERM

This license is effective from the date of obtaining or purchasing the SOFTWARE and
shall remain in force until terminated. You may terminate the license and this agreement at
any time by destroying the SOFTWARE and its documentation, together with all copies in
any form that reside on your computer or media.

COPYRIGHT NOTICE:

The Company and/or our Licensors hold valid copyright in the Software. Nothing in this
Agreement constitutes a waiver of any rights under U.S. Copyright law or any other federal
or state law.

ACKNOWLEDGMENT:

BY USING THIS SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE READ
THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE
COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN
YOU AND THE COMPANY AND SUPERCEDES ALL PROPOSALS OR PRIOR
ENDORSEMENTS, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS
BETWEEN YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE
COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

All trademarked names mentioned in this document and product are used for editorial
purposes only, with no intention of infringing upon the trademarks.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

ActiveX xtra Programmer's Guide
ActiveX xtra implements custom cast member type; therefore it can be used in the similar
way as other visual Director cast members.

Inserting new ActiveX cast member
Once ActiveX xtra is placed in Director Xtras folder it adds the menu command for
creation new ActiveX cast members:

Insert\XtraMania :: ActiveCompanionSet :: ActiveX control...

Use this command to insert new empty ActiveX xtra cast member. The command invokes
the ActiveX xtra media editor described below.

Media editor
Note: ActiveX xtra's Media Editor is provided as a separate 'ActiveX xtra UI.dll'
file. Make sure you have placed it into the Xtras folder of your Director installation (near
with the ActiveX xtra.x32 file).

Note: You do not need to pack 'ActiveX xtra UI.dll' file with Projector since it is
not used by the xtra while it is running within Projector. It is used only while authoring
with Director.

To change existing ActiveX object cast member double click it or its sprite to invoke
media editor dialog.

Control properties button invokes the control's properties editor dialog box.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Press Select control button to choose ActiveX control. The dialog window with
available ActiveX controls will appear.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Scripting operations
The type of ActiveX xtra cast member is #ActiveXobject. You can use it to create new
cast members by Lingo and then specify the ActiveX control for the member.

Scripting ActiveX control and processing events are handled by VbScriptXtra Automation
wrapper.

Also see debugging and error handling recommendations for scripting with ActiveX xtra.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Creating new ActiveX cast member
The type of the cast member implemented by ActiveX xtra is #ActiveXobject. So use
the statement below to create a new empty ActiveX cast member:
assetActiveX = new(#ActiveXobject)

or
assetActiveX = new(#ActiveXobject, member(1))

So, assetActiveX is a reference to the newly created ActiveX xtra's cast member. Use
asset.InsertActiveX() to programmatically create specific ActiveX control by either
ProgId or CLSID.
assetActiveX.InsertActiveX("Shell.Explorer")

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Scripting ActiveX control with VbScriptXtra
ActiveX controls usually support COM Automation. It allows scripting them with
VbScriptXtra. Once control is running on stage as a sprite ActiveX xtra may get its
scripting interface and return it via VbScriptXtra Automation wrapper. Use
sprite.GetObject() method to get the Automation wrapper for the running ActiveX
control.

Note: sprite.GetObject() method requires VbScriptXtra to be available, since it uses
some of its functionality.

Some ActiveX controls may fire events for handling user actions or other things. Use
EventsHandler property of the VbScriptXtra wrapper returned by
sprite.GetObject() method to set the handler for these events. Events could be
handled by either parent script instance or sprite's behavior.

Below is the code of behavior that may be placed on Internet Explorer ActiveX sprite. It
prevents user from opening new IE windows on Shift + Click on the URL. Instead it makes
the control itself to browse to the requested page.
property spriteNum
property mControl

on beginSprite me
 sprite(spriteNum).debugMode = true

 -- Trying to get Automation object for ActiveX control
 mControl = sprite(spriteNum).GetObject()

 -- Set me to be the event handler for ActiveX control
 mControl.EventsHandler = me

 mControl.Navigate("www.xtramania.com")
end

on endSprite me
 -- Make sure to clear event handler
 mControl.EventsHandler = VOID
end

-- Generic events handler for ActiveX control
on IncomingEvent me, event, args
 case event of
 #NewWindow3:
 -- We do not wnat user to be able opening new IE window,
 -- so we cancel operation and simply make the
 -- current IE to navigate to the requested page
 args[#Cancel] = #true

 put "Navigate to: " & args[#bstrUrl]
 mControl .Navigate(args[#bstrUrl])

 otherwise
 -- Put other events to Messages window just to look at them
 put event,args
 end case
end

In this sample mControl is usual VBScriptXtra wrapper. Refer to the VbScriptXtra's
documentation for more details.

Use mControl.Interface() method to invoke ObjectBrowser xtra with detailed
description of what you can do with it.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Debugging and Errors Handling
There are two main levels of errors related to ActiveX xtra. They have completely different
nature and therefore have to be handled differently.

Lingo Errors
Lingo errors are similar to incorrect Lingo syntax run-time errors. They cause Director to
show error alert saying something like "Method or property not found in object" or "One
parameter expected". In Projector they might halt script execution etc. These errors usually
mean that something is wrong with the programming. Wrong method call syntax is used or
something similar to it. ActiveX xtra might return error codes to Director that make
Director to show Lingo error alert box. It happens when ActiveX xtra discovers the
programming error at the Lingo level (wrong syntax, wrong parameters and other compile
time evident programming errors).

Programming Errors
This level includes errors that are actually exception conditions. They happen or do not
happen depending on particular execution context. They are normal in programming
practice and have to be handled programmatically. For example if file operation fails it
does not have to worry end-user with Lingo error alert box. Instead developer should check
whether operation completed successfully and perform whatever is appropriate.

ActiveX xtra provides programming errors handling support based on storing status of the
last call within every ActiveX asset object. In other words, every ActiveX xtra's asset or
actor object keeps the error code and description returned by the most recently called
method or property. Before returning from the call to any object the last error information
(if any) is being set by the asset or actor object. Right before calling the next method or
property of the object the last error information is cleared.

To check the status of the most recent call to the object, use object.Failed or
aobject.Succeeded properties. The error message and error code are available via
object.LastError and object.LastErrorCode properties.

Simple Debugging Mode
Since errors are happening ActiveX xtra provides debugging modes to simplify debugging
process.

In simple debugging mode any asset or actor puts error information into Messages window
whenever error occurred. Usually simple debugging mode is useful to detect whether script
is executed well or there is a problem somewhere. These error messages contain no
information about the context where error occurred.

To set the simple debugging mode for the particular asset use:
member("ActiveXmember").debugMode = 1
sprite(spriteNum).debugMode = 1

Advanced Debugging Mode
Advanced debugging mode allows you to catch error right in Debugger whenever error
occurred. In this mode ActiveX xtra tries to call movie-level handler (it is shared with
VbScriptXtra) VbScriptXtra_DebugEvent(strMes, nCode). If there is no

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

such handler, the xtra behaves as in simple debugging mode. This handler may contain any
Lingo statements. Furthermore, you can place a break point inside this handler and use
Director's debugging capabilities to view the calling context, variables etc.

Sample movie-level handler for advanced debugging.
on VbScriptXtra_DebugEvent strMes, nCode
 put strMes -- Place the break point here
end

Debugging mode is kept separately for every ActiveX xtra asset and actor. Use
DebugMode property to change the debugging mode of the particular object directly. To
set the advanced debugging mode for the particular object use:
member("ActiveXmember").debugMode = 2
sprite(spriteNum).debugMode = 2

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

ActiveX xtra Programmer's Reference
ActiveX xtra implements its own type of Director cast member (asset). ActiveX xtra asset
object (or cast member) keeps the reference to the particular type of ActiveX control as
well as its initialization properties.

ActiveX xtra implements actor object that can be placed on the stage as Director sprite.
ActiveX xtra actor can show visual ActiveX control as a Director always on top sprite.

Most of the scripting support is implemented by means of VbScriptXtra. ActiveX xtra
actor provides only a few identification properties and method providing access to the
COM Automation interface of the ActiveX control.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Common properties for assets and actors
ActiveX xtra provides common scripting support similar to VbScriptXtra. It includes error
handling and debugging support.

Error handling support

Succeeded

Returns true if the most recent call to the asset was successful.

Syntax
bResult = asset.Succeeded

Return values

True

If the previous call to the asset was successful

False

If the previous call to the asset was not successful. The error code and description are
available via #LastErrorCode and LastError properties.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset object.

Failed

Returns true if the most recent call to the asset has failed.

Syntax
bResult = asset.Failed

Return values

True

If the previous call to the asset was not successful. The error code and description are
available via LastErrorCode and LastError properties.

False

If the previous call to the wrapper's contents was successful

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

LastErrorCode

Returns the code of the last error (if any) happened while calling the asset.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Syntax
nCode = asset.LastErrorCode

Return values

Integer

Integer value that indicates the error code of the most recent call to the asset. If the
most recent call completed successfully, the error code is 0.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

LastError

Returns the description of the last error (if any) happened while calling the asset.

Syntax
strErrorMessage = asset.LastError

Return values

String

String value that contains the error description of the most recent call to the asset. If the
most recent call completed successfully, the error description is empty.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

Debugging Support
Every ActiveX xtra asset can detect errors produced while executing ActiveX operations.
Internal ActiveX xtra errors (memory problems etc) could happen too. Normally these
errors could be trapped programmatically by checking asset's last error status after any
meaningful call to the asset. See error handling support properties for more details. To
simplify debugging process ActiveX xtra provides debugging mode.

Simple Debugging Mode

In simple debugging mode any asset object puts error information into Messages window
whenever error occurred. Usually simple debugging mode is useful to detect whether script
is executed well or there is a problem somewhere. Error messages usually come from
wrapped objects but there is no information about the context where error occurred.

Advanced Debugging Mode

Advanced debugging mode allows you to catch error right in Debugger whenever error
occurred. In this mode ActiveX xtra tries to call movie-level handler (it shares the handler
with VbScriptXtra) VbScriptXtra_DebugEvent(strMes, nCode). If there
is no such handler, the xtra behaves as in simple debugging mode. This handler may

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

contain any Lingo statements. Furthermore, you can place a break point inside this handler
and use Director's debugging capabilities to view the calling context, variables etc.

Sample movie-level handler for advanced debugging.
on VbScriptXtra_DebugEvent strMes, nCode
 put strMes -- Place the break point here
end

Debugging mode is kept separately for every ActiveX xtra asset or actor object. Debugging
mode is not saved with the asset, so use DebugMode property to change the debugging
mode of the particular asset directly.

DebugMode

Sets or gets the debugging mode for the specific asset.

Syntax
nDebugMode = asset.DebugMode

asset.DebugMode = nDebugMode

Parameters

nDebugMode - Integer

Debugging mode for newly created objects. This parameter can be one of the following
values.

Value Meaning
0 No debugging support. Release behavior.
1 Simple debugging. Any error is automatically printed in Messages

window.
2 Advanced debugging. When any error is occurred, the xtra calls movie

level handler VbScriptXtra_DebugEvent(strMes, nCode).

Return values

Integer

Integer value that indicates the current debugging mode applied to the wrapper.

Remarks

This property as well as other properties described in this section does not clear the last
error flag. It means this property does not affect the last error information for the particular
asset.

ActiveX xtra actors produced by the ActiveX xtra assets inherit asset's debugging mode.

VbScriptXtra wrapper objects produced by ActiveX xtra actors get the debugging mode
from the asset.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Asset-level
ActiveX xtra asset provides a scripting identification control to its contents.

ActiveX xtra provides common scripting support similar to VbScriptXtra. It includes error
handling and debugging support.

Xtra Specific Properties

Version

This property returns the ActiveX xtra’s version.

Syntax
strVersion = asset.Version

strVersion = asset.Version()

Return values

String

Version string in a form of 5 point delimited items: "ActiveX xtra.1.0.0.3".

The first item is the xtra's name "ActiveX xtra".

The second item is the major xtra's version.

The third item is the subversion number. It indicates noticeable changes.

The forth item is the minor version number. It indicates minor changes.

The last item is the absolute build number. It is auto incremented with every release
build of the xtra.

CLSID

Returns the class Id of the wrapped ActiveX control (if any).

Syntax
strClsId = asset.CLSID

Return values

String

String value that indicates the CLSID of the control type in the registry format.

Remarks

The same property exists at the actor level.

ProgId

Returns the ProgId of the wrapped ActiveX control (if any).

Syntax
strProgId = asset.ProgId

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Return values

String

String value that indicates the ProgId of the embedded object.

Remarks

This property relies on the registry to determine the ProgId assigned to the ActiveX
control's CLSID. If ActiveX control is not installed the property might return empty string
even for valid ActiveX object.

The same property exists at the actor level.

Xtra Specific Methods

InsertActiveX()

Initializes the asset with new ActiveX control object. New ActiveX object could be either
specified by its ProgId or CLSID.

Syntax
bSucceeded = asset.InsertActiveX(String strSource)

Parameters
strSource

String value that indicates the object to be inserted. It could be one of the following
values:

Value Meaning
"{CLSID}" New OLE object by the specified CLSID in registry format.
"ProgId" New OLE object by its ProgId (i.e. "Shell.Explorer")

Return values

Integer

Integer value that indicates whether operation has succeeded.

Remarks

This method discards the current media of the asset only if the new ActiveX object is
successfully created.

 ActiveX xtra version 1.0

 © Eugene Shoustrov, 2005

Actor-level
ActiveX xtra actors represent Director sprites. ActiveX xtra actor provides a scripting
control to its contents. Once control is running on stage as a sprite ActiveX xtra may get its
scripting interface and return it via VbScriptXtra Automation wrapper. Use
sprite.GetObject() method to get the Automation wrapper for the running ActiveX
control.

ActiveX xtra provides common scripting support similar to VbScriptXtra. It includes error
handling and debugging support.

Xtra Specific Methods

GetObject()

Method tries to get IDispatch pointer (scripting interface) from the running ActiveX
control to allow controlling it with COM Automation scripting. If successful, the instance
of Automation wrapper of VbScriptXtra is created to hold the Automation object. This
instance is returned by the method.

If ActiveX control does not support COM Automation the method returns VOID.

Syntax
objAuto = sprite(spriteNum).GetObject()

Return values

Object

If object is created successfully the method returns the new instance of VbScriptXtra
wrapper object that holds scripting interface of the running ActiveX object.

VOID

If the ActiveX object does not support COM Automation, VOID is returned.

Remarks

Take care with returned object since it keeps the reference to the ActiveX control keeping
it in memory. Make sure to set the variable to VOID to allow ActiveX object to release its
memory.

Note: This method relies on some functionality of VbScriptXtra. Therefore it fails if
VbScriptXtra is not available.

	ActiveX xtra
	About ActiveX xtra
	About ActiveCompanionSet
	What is the Difference
	'ActiveCompanionSet' Xtras License Agreement

	ActiveX xtra Programmer's Guide
	Inserting new ActiveX cast member
	Media editor
	Scripting operations
	Creating new ActiveX cast member
	Scripting ActiveX control with VbScriptXtra
	Debugging and Errors Handling
	Lingo Errors
	Programming Errors
	Simple Debugging Mode
	Advanced Debugging Mode

	ActiveX xtra Programmer's Reference
	Common properties for assets and actors
	Error handling support
	Succeeded
	Failed
	LastErrorCode
	LastError

	Debugging Support
	DebugMode

	Asset-level
	Xtra Specific Properties
	Version
	CLSID
	ProgId

	Xtra Specific Methods
	InsertActiveX()

	Actor-level
	Xtra Specific Methods
	GetObject()

