Какие бывают модели?
Практическая работа № 9 «Броуновское движение»
Существует множество классификации моделей, каждая из которых отражает какое-то одно свойство. Универсальной классификации моделей нет.
По своей природе модели делятся на материальные (физические, предметные) и информационные.
Материальные модели «можно потрогать» — это игрушки, уменьшенные копии самолётов и кораблей, чучела животных, учебные модели молекул и т. п.
Информационные модели — это информация о свойствах оригинала и его связях с внешним миром. Среди них выделяют вербальные модели (словесные, мысленные) и знаковые модели, записанные с помощью какого-то формального языка:
• графические (схемы, карты, фотографии, чертежи);
• табличные;
• математические (формулы);
• логические (варианты выбора на основе анализа условий);
• специальные (ноты, химические формулы и т. п.).
Различают статические и динамические модели.
В статических моделях предполагается, что интересующие нас свойства оригинала не изменяются во времени.
Динамические модели описывают движение, развитие, изменение.
Какие из этих моделей статические, а какие — динамические:
а) модель полёта шарика;
б) фотография;
в) видеозапись;
г) история болезни;
д) анализ крови;
е) модель молекулы воды;
ж) модель развития землетрясения;
з) модель вращения Луны вокруг Земли?
Динамические модели могут быть дискретными и непрерывными.
Модель называется дискретной, если она описывает поведение оригинала только в отдельные моменты времени. Например, модель колонии животных определяет их численность один раз в год.
Непрерывная модель описывает поведение оригинала для всех моментов времени из некоторого временного промежутка. Например, формула у = sin х и график этой функции — это непрерывные модели. Так как компьютер работает только с дискретными данными, все компьютерные модели — дискретные.
По характеру связей модели делятся на детерминированные и вероятностные.
В детерминированных моделях связи между исходными данными и результатами жёстко заданы, при одинаковых исходных данных всегда получается один и тот же результат (например, при расчёте по известным формулам).
Вероятностные модели учитывают случайность событий в реальном мире, поэтому при одних и тех же условиях результаты нескольких испытаний модели могут отличаться. К вероятностным относятся модели броуновского движения частиц, полёта самолёта с учётом ветра, движения корабля при морском волнении, поведения человека. В результате эксперимента с такими моделями определяют некоторые средние величины по результатам серии испытаний, например среднюю скорость движения частиц, среднее отклонение корабля от курса и т. п. Несмотря на случайность, эти результаты достаточно стабильны, т. е. мало меняются при повторных испытаниях.
Используя дополнительные источники, выясните, от каких иностранных слов произошли слова «вербальный», «статический», «динамический», «детерминированный».
По материалам параграфа составьте в тетради схемы различных классификаций моделей.
Имитационные модели используются в тех случаях, когда поведение сложной системы нельзя (или крайне трудно) предсказать теоретически, но можно смоделировать её реакцию на внешние условия. Для того чтобы найти оптимальное (самое лучшее) решение задачи, нужно выполнить моделирование при многих возможных вариантах и выбрать наилучший из них. Такой метод часто называют методом проб и ошибок.
Имитационные модели позволяют очень точно описать поведение оригинала, но полученные результаты справедливы только для тех случаев, которые мы моделировали (что случится в других условиях — непонятно). Примеры использования имитационных моделей:
• испытание лекарств на мышах, обезьянах, группах добровольцев;
• модели биологических систем;
• экономические модели управления производством;
• модели систем массового обслуживания (банки, магазины и т. п.). Для понимания работы процессора можно использовать его имитационную модель, которая позволяет вводить команды в определённом формате и выполнять их, и показывает изменение значений регистров (ячеек памяти) процессора. Подобные модели применяют в том случае, когда нужно написать программу для системы, на которой её невозможно отлаживать (например, для микропроцессора, встроенного в бытовую технику). Такой подход называют кросс-программированием: программа пишется и отлаживается в одной системе, а работать будет в другой. В этом случае другую систему приходится моделировать с помощью имитационной модели.
Игровые модели позволяют учитывать действия противника, например, при моделировании военных действий, соревнований, конкуренции в бизнесе. Задача игрового моделирования — найти лучшую стратегию в игре — план действий, который даёт наилучшие результаты даже в том случае, когда противник играет безошибочно. Этими вопросами занимается теория игр — раздел математики, одним из создателей которого был американский учёный Джон фон Нейман.
Следующая страница Адекватность моделей