Компьютерное информационное моделирование (§16)
Моделирование зависимостей между величинами (§17)
Величины и зависимости между ними
Практическая работа №3.1 Получение регрессионных моделей
Модели статистического прогнозирования (§18)
Моделирование корреляционных зависимостей (§19)
Модели оптимального планирования (§20)
Итоговое тестирование по теме "Информационное моделирование"
Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:
1) время падения тела на землю зависит от его первоначальной высоты;
2) давление газа в баллоне зависит от его температуры;
3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.
Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Рассмотрим различные методы представления зависимостей.
Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.
С понятием величины вы уже встречались в курсе информатики 7-9 классов. Напомним, что со всякой величиной связаны три основных свойства: имя, значение, тип.
Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин.
Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора π = 3,14159.... Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных . Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический . Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, и рассматриваться будут только величины числового типа.
А теперь вернемся к примерам 1-3 (см. начало параграфа) и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.
1 ) t (с) - время падения; Н (м) - высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с2) будем считать константой .
2 ) Р (н/м2) - давление газа (в единицах СИ давление измеряется в ньютонах на квадратный метр); t (0С) - температура газа. Давление при нуле градусов Р0 будем считать константой для данного газа.
3 ) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) - С (мг/м3) . Единица измерения - масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1 000 жителей данного города - Р (бол./тыс.).
Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разным , поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.
Следующая страница Математические модели