Развернутая и свернутая формы записи чисел. Перевод из произвольной в десятичную систему счисления | Арифметические операции в позиционных системах счисления

Планирование уроков на учебный год (по учебнику Н.Д. Угриновича)


Урок 19
Развернутая и свернутая формы записи чисел. Перевод из произвольной в десятичную систему счисления


§ 4.1. Кодирование числовой информации



Содержание урока

4.1.2. Арифметические операции в позиционных системах счисления

Лабораторная работа № 11 «Учимся производить вычисления в разных системах счисления»


4.1.2. Арифметические операции в позиционных системах счисления


Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0,
0 + 1 = 1,
1 + 0 = 1,
1 + 1 = 10.

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда значение цифры в нем становится равным или большим основания системы счисления. Для двоичной системы счисления это значение равно двум.

Сложение многоразрядных двоичных чисел производится в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 1102 и 112:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

Теперь переведем результат двоичного сложения в десятичное число:

Сравним результаты — сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел.

При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Вычитание многоразрядных двоичных чисел производится в соответствии с вышеприведенной таблицей вычитания с учетом возможных заемов из старших разрядов. В качестве примера произведем вычитание двоичных чисел 1102 и 112:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Умножение многоразрядных двоичных чисел производится в соответствии с вышеприведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя. В качестве примера произведем умножение двоичных чисел 1102 и 112:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 1102 на 112:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания для самостоятельного выполнения


4.6. Задание с развернутым ответом. Выполните сложение, вычитание, умножение и деление двоичных чисел 10102 и 102

Cкачать материалы урока






Наверх