Законы алгебры логики
Для упрощения логических выражений используют законы алгебры логики. Они формулируются для базовых логических операций — «НЕ», «И» и «ИЛИ».
Закон двойного отрицания означает, что операция «НЕ» обратима: если применить ее два раза, логическое значение не изменится. Закон исключённого третьего основан на том, что в классической (двузначной) логике любое логическое выражение либо истинно, либо ложно («третьего не дано»). Поэтому если А = 1, то А = 0 (и наоборот), так что произведение этих величин всегда равно нулю, а сумма — единице.
Операции с константами и закон повторения легко проверяются по таблицам истинности операций «И» и «ИЛИ». Переместительный и сочетательный законы выглядят вполне привычно, так же, как и в арифметике. Почти везде «работает» аналогия с алгеброй чисел, нужно только помнить, что в логике 1 + 1 = 1, а не 2.
Распределительный закон для операции «ИЛИ» — это обычное раскрытие скобок. А вот для операции «И» мы видим незнакомое выражение, в алгебре чисел это равенство неверно. Доказательство можно начать с правой части, раскрыв скобки:
(А + В) • (А + С) = А • А + А • С + В • А + В • С.
Дальше используем закон повторения (А • А = А) и заметим, что
А + А • С = А • (1 + С) = А • 1 = А.
Аналогично доказываем, что А + В • А = А • (1 + В) = А, таким образом,
(А + В) • (А + С) = А + В • С.
Равенство доказано. Попутно мы доказали также и закон поглощения для операции «И» (для операции «ИЛИ» вы можете сделать это самостоятельно). Отметим, что из распределительного закона следует полезное тождество:
А + А • В = (А + А) • (А + В) = А + В.
Правила, позволяющие раскрывать отрицание сложных выражений, названы в честь шотландского математика и логика Огастеса (Августа) де Моргана. Обратите внимание, что при этом не просто «общее» отрицание переходит на отдельные выражения, но и операция «И» заменяется на «ИЛИ» (и наоборот). Доказать законы де Моргана можно с помощью таблиц истинности.
Теперь с помощью приведённых законов алгебры логики упростим полученное ранее логическое выражение для объединения областей 3 и 4 на диаграмме с тремя переменными (§ 20, рис. 3.15):
(А • В • C) + А • В • C = (А + А) • В • C = В • C.
Здесь мы сначала вынесли общий множитель двух слагаемых за скобки, а затем применили закон исключённого третьего.
В общем случае можно рекомендовать такую последовательность действий.
1. Заменить все «небазовые» операции (исключающее ИЛИ, импликацию, эквивалентность и др.) на их выражения через базовые операции «НЕ», «И» и «ИЛИ».
2. Раскрыть отрицания сложных выражений по законам де Моргана так, чтобы операции отрицания остались только у отдельных переменных.
3. Используя вынесение общих множителей за скобки, раскрытие скобок и другие законы алгебры логики, упростить выражение.
Пример
(А + B) • (А + B) • (А + С)=(А + B) • А • B • (А + C = (А • А + B • А) • B • (А + С) = B • А • B • (А + С) = А • B • B • (А + С) = B • А • (А + С) = B • (А.
Здесь последовательно использованы закон де Моргана, распределительный закон, закон исключённого третьего, переместительный закон, закон повторения, снова переместительный закон и закон поглощения.
Следующая страница Логические уравнения