§2. Подходы к измерению информации | Единицы измерения информации (курс фгос 34 ч.)

Планирование уроков на учебный год (ФГОС)


Урок 2
§2. Подходы к измерению информации



Содержание урока:

Информация и её свойства

2.1. Содержательный подход к измерению информации

2.2. Алфавитный подход к измерению информации.

2.3. Единицы измерения информации.

САМОЕ ГЛАВНОЕ. Вопросы и задания.

Материалы к уроку


2.3. Единицы измерения информации


Итак, в двоичном коде один двоичный разряд несёт 1 бит информации. 8 бит образуют один байт. Помимо бита и байта, для измерения информации используются более крупные единицы:

1 Кбайт (килобайт) = 210 байт;

1 Мбайт (мегабайт) = 210 Кбайт = 220 байт;

1 Гбайт (гигабайт) = 210 Мбайт = 220 Кбайт = 230 байт;

1 Тбайт (терабайт) = 210 Гбайт = 220 Мбайт = 230 Кбайт = 240 байт;

1 Пбайт (петабайт) = 210 Тбайт = 220 Гбайт = 230 Мбайт = 240 Кбайт = 250 байт.


Исторически сложилось так, что приставки «кило», «мега», «гига», «тера» и др. в информатике трактуются не так, как в математике, где «кило» соответствует 103, «мега» — 106, «гига» — 109, «тера» — 1012 и т. д.

Это произошло потому, что 210 = 1024 ≈ 1000 = 103. Поэтому 1024 байта и стали называть килобайтом, 210 килобайта стали называть мегабайтом и т. д.

Чтобы избежать путаницы с различным использованием одних и тех же приставок, в 1999 г. Международная электротехническая комиссия ввела новый стандарт наименования двоичных приставок. Согласно этому стандарту, 1 килобайт равняется 1000 байт, а величина 1024 байта получила новое название — 1 кибибайт (Кибайт).

У нас в стране в 2009 году принято «Положение о единицах величин, допускаемых к применению в Российской Федерации». В нём сказано, что наименование и обозначение единицы количества информации «байт» (1 байт = 8 бит) применяются с двоичными приставками «кило», «мега», «гига», которые соответствуют множителям «210», «220» и «230» (1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт). Данные приставки пишутся с большой буквы.

Рассмотрим ещё несколько примеров решения задач, связанных с определением информационного объёма сообщений.

Пример 8. При регистрации в компьютерной системе каждому пользователю выдаётся пароль длиной в 12 символов, образованный из десятичных цифр и первых шести букв английского алфавита, причём буквы могут использоваться как строчные, так и прописные — соответствующие символы считаются разными. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для которых отведено 12 байт. На какое максимальное количество пользователей рассчитана система, если для хранения сведений о пользователях в ней отведено 200 Кбайт?

Прежде всего, выясним мощность алфавита, используемого для записи паролей: N — 6 (буквы прописные) + 6 (буквы строчные) + 10 (десятичные цифры) = 22 символа.

Для кодирования одного из 22 символов требуется 5 бит памяти (4 бита позволят закодировать всего 24 = 16 символов, 5 бит позволят закодировать уже 25 = 32 символа); 5 — минимально возможное количество бит для кодирования 22 разных символов алфавита, используемого для записи паролей.

Для хранения всех 12 символов пароля требуется 12 • 5 = 60 бит. Из условия следует, что пароль должен занимать целое число байт; т. к. 60 не кратно восьми, возьмём ближайшее большее значение, которое кратно восьми: 64 = 8 • 8. Таким образом, один пароль занимает 8 байт.

Информация о пользователе занимает 20 байт, т. к. содержит не только пароль (8 байт), но и дополнительные сведения (12 байт).

Максимальное количество пользователей («польз.»), информацию о которых можно сохранить в системе, равно 10 240:

Пример 9. Объём сообщения, состоящего из 8192 символов, равен 16 Кбайт. Какова максимальная мощность алфавита, использованного при передаче сообщения?


Cкачать материалы урока






Наверх