Планирование уроков на учебный год (ФГОС)



Урок 16
§13. Представление чисел в компьютере






Содержание урока:

13.1. Представление целых чисел

13.1. Представление целых чисел (продолжение)

13.2. Представление вещественных чисел

13.2. Представление вещественных чисел (продолжение)

САМОЕ ГЛАВНОЕ. Вопросы и задания

Материалы к уроку


liniya

Самым первым видом данных, с которыми начали работать компьютеры, были числа. ЭВМ первого поколения могли производить только математические расчёты (вычисления).

Из курса информатики основной школы вы помните, что компьютеры работают с целыми и вещественными числами. Их представление в памяти осуществляется разными способами.

13.1. Представление целых чисел


Во многих задачах, решаемых на компьютере, обрабатываются целочисленные данные. Прежде всего, это задачи экономического характера, при решении которых данными служат количества акций, сотрудников, деталей, транспортных средств и др. Целые числа используются для обозначения даты и времени, для нумерации различных объектов: элементов массивов, записей в базах данных, машинных адресов и т. д. По своей природе множество целых чисел дискретно, т. к. состоит из отдельных элементов.

И хотя любое целое число можно рассматривать как вещественное, но с нулевой дробной частью, предусмотрены специальные способы представления целых чисел. Это обеспечивает: эффективное расходование памяти, повышение быстродействия, повышение точности вычислений за счёт введения операции деления нацело с остатком.

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда.

Беззнаковое представление можно использовать только для неотрицательных целых чисел.

Для получения компьютерного представления беззнакового целого числа в n-разрядной ячейке памяти достаточно перевести его в двоичную систему счисления и, при необходимости, дополнить полученный результат слева нулями до n-разрядов.

Например, десятичные числа 130 и 39 в восьмиразрядном представлении будут иметь вид:

Понятно, что существуют ограничения на числа, которые могут быть записаны в n-разрядную ячейку памяти. Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2n-1. Минимальное число соответствует n нулям, хранящимся в n разрядах памяти, и равно нулю. Далее приведены диапазоны значений для беззнаковых целых n-разрядных чисел:

При знаковом представлении целых чисел старший разряд ячейки отводится под знак (0 — для положительных, 1 — для отрицательных чисел), а остальные разряды — под цифры числа.

Представление числа в привычной для человека форме «знак-величина», при которой старший разряд ячейки отводится под знак, а остальные разряды — под цифры числа, называется прямым кодом.


Например, прямые коды чисел 48 и -52 для восьмиразрядной ячейки равны:

Минимальное отрицательное число, которое можно записать в знаковом представлении в n разрядах, равно 2n-1. Максимальное положительное число, которое можно записать в знаковом представлении в n разрядах, равно 2n-1 - 1. Ниже приведены диапазоны значений для знаковых представлений целых чисел в ячейках с различной разрядностью:

В математике множество целых чисел бесконечно.

Компьютер работает с ограниченным множеством целых чисел.


Прямой код положительного числа отличается от прямого кода равного по абсолютной величине отрицательного числа только содержимым знакового разряда.

В прямом коде числа можно хранить, но выполнение арифметических операций над числами в прямом коде затруднено — оно требует более сложной архитектуры центрального процессора, «умеющего» выполнять не только сложение, но и вычитание, а также «знающего» особый алгоритм обработки не имеющего «веса» знакового разряда. Этих трудностей позволяет избежать использование дополнительного кода.

Чтобы понять сущность дополнительного кода, рассмотрим работу реверсивного счётчика, последовательность показаний которого можно представить в виде замкнутого кольца из чисел (рис. 3.5).

Рис. 3.5. Реверсивный счётчик


Cкачать материалы урока






Наверх