Содержание урока:
13.1. Представление целых чисел
13.1. Представление целых чисел (продолжение)
13.2. Представление вещественных чисел
13.2. Представление вещественных чисел (продолжение)
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Попробуйте обосновать это утверждение.
Вещественные числа записываются в естественной или в экспоненциальной форме.
В жизни мы чаще пользуемся естественной формой записи чисел, при которой: число представляется последовательностью десятичных цифр со знаком плюс или минус, знак плюс может опускаться, для разделения целой и дробной частей числа используется запятая.
Например: 12,34; 0,0056; -708,9.
В экспоненциальной форме вещественное число а представляется как а = ± m • qp, где m — мантисса числа, q — основание системы счисления, р — порядок числа.
Например, длину некоторого отрезка, равного 47,8 см, можно записать так:
1) 478 • 10-1 см;
2) 47,8 • 100 см;
3) 4,78 • 101 см;
4) 0,478 • 102 см;
5) 0,000478 • 105 см.
Такое многообразие вариантов записи в экспоненциальной форме одного и того же числа не всегда удобно. Для однозначного представления вещественных чисел в компьютере используется нормализованная форма.
Нормализованная запись отличного от нуля вещественного числа1) — это запись вида а = ± m • qp, где р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.
1) Стандарт IEEE 754.