Содержание урока:
16.1. Звук и его характеристики
16.3. Оцифровка звука (продолжение)
Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).
Вообще говоря, в компьютер приходит не сам звук, а электрический сигнал, снимаемый с какого-либо устройства: например, микрофон преобразует звуковое давление в электрические колебания, которые в дальнейшем и обрабатываются.
Если записывается стереозвук (ведётся двухканальная запись), то оцифровке подвергается не один электрический сигнал, а сразу два и, следовательно, количество сохраняемой цифровой информации удваивается.
Сущность временной дискретизации заключается в том, что аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определённая величина интенсивности звука (рис. 3.13). Другими словами, через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации.
Частота дискретизации — это количество измерений громкости звука за одну секунду.
Рис. 3.13. Временная дискретизация звукового сигнала (А(t) — амплитуда, t — время)
Частота дискретизации измеряется в герцах (Гц) и килогерцах (кГц). 1 кГц = 1000 Гц. Частота дискретизации, равная 100 Гц, означает, что за одну секунду проводилось 100 измерений громкости звука.
Качество звукозаписи зависит не только от частоты дискретизации, но также и от глубины кодирования звука.
Глубина кодирования звука или разрешение — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.
В результате измерений звукового сигнала (см. рис. 3.13) на каждой его «ступеньке» будет получено некоторое значение громкости, при этом все результаты измерений будут лежать в некотором диапазоне.
Пусть под запись одного результата измерения громкости в памяти компьютера отведено n бит. Вы знаете, что это позволяет закодировать ровно 2n разных результатов измерений. Так, при n = 8 можно закодировать 256 разных результатов измерений громкости звука. Поэтому весь диапазон, в котором могут находиться результаты измерений громкости звука, можно разбить на 256 разных поддиапазонов — уровней громкости звука, каждому из которых присвоить свой уникальный код. После этого каждый имеющийся результат измерений громкости звука можно соотнести с некоторым поддиапазоном, в который он попадает, и кодировать его номером (кодом) соответствующего уровня громкости.
В зависимости от ситуации на практике используются разные значения частоты дискретизации и глубины кодирования (табл. 3.13).
Таблица 3.13
Примеры параметров оцифровки звука